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Causal Learning With Local Computations

Philip M. Fernbach and Steven A. Sloman

Brown University

The authors proposed and tested a psychological theory of causal structure learning based on local
computations. Local computations simplify complex learning problems via cues available on individual
trials to update a single causal structure hypothesis. Structural inferences from local computations make
minimal demands on memory, require relatively small amounts of data, and need not respect normative
prescriptions as inferences that are principled locally may violate those principles when combined. Over
a series of 3 experiments, the authors found (a) systematic inferences from small amounts of data; (b)
systematic inference of extraneous causal links; (c) influence of data presentation order on inferences;
and (d) error reduction through pretraining. Without pretraining, a model based on local computations
fitted data better than a Bayesian structural inference model. The data suggest that local computations

serve as a heuristic for learning causal structure.
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Knowledge of causal structure guides explanation, prediction,
memory, communication, and control (Sloman, 2005). How is
such knowledge obtained? Hume (1777/1975) argued that causal
relations are not directly observable and therefore must be inferred
on the basis of observable cues. While he suggested several cues
such as contiguity and temporal order, it was the regular co-
occurrence of cause and effect, constant conjunction, he deemed to
be the most important and reliable source of information for causal
induction. For example, no spatial or temporal cues seem to pertain
to inferring a causal relation between the moon and the tides, yet
such a relation was inferred historically on the basis of their
covariation. We will argue that people do not rely on covariation
when learning the structure of causal relations but instead tend to
use a variety of cues that allow causal structure to be built up
piecemeal from local links.

Associative Strength Learning

The focus on regular co-occurrence has set the stage for con-
temporary learning theories that have formalized Hume’s notion of
constant conjunction in a variety of ways. Associationist theories
inspired by the animal conditioning literature (e.g., Rescorla &
Wagner, 1972), for instance, have represented causality as a pre-
dictive relation based on associative strength. As two events are
repeatedly paired, the learner comes to expect that one will be
accompanied by the other. According to a correlational model, AP,
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judgments of causality are based on contingency, the increase in
probability of an effect given the cause from the base probability
of the effect (Jenkins & Ward, 1965). In the limit of infinitely
many learning trials, the Rescorla—Wagner learning rule converges
to AP (under reasonable assumptions, Danks, 2003). This shows
that the contingency judgment can be approximated by a simple
iterative algorithm that changes associative strength on each trial,
and there is a good deal of empirical evidence for a relation
between contingency and judgments of causality (Allan & Jenkins,
1980).

Despite these virtues, associative accounts have limitations as
descriptions of human learning. They do not provide a means to
distinguish causes from effects, nor do they distinguish genuine
causal relations from correlations due to common causes. More-
over, people (Hagmayer, Sloman, Lagnado, & Waldmann, 2007)
and even rats (Blaisdell, Sawa, Leising, & Waldmann, 2006) can
distinguish observing an event from intervening to produce that
event when learning causal structure. Intervention has been
deemed the hallmark of causality (e.g., Pearl, 2000; Woodward,
2003) in the sense that A causes B if and only if a sufficient
intervention to change the state of A would also change B (in the
absence of anything to disable the effect of A on B). While an
associative model might capture such a distinction post hoc, the
current state of the art deploys different associative frameworks to
represent observational (Rescorla & Wagner, 1972) and instru-
mental (Colwill & Rescorla, 1986) learning. Parsimony dictates
that capturing both in a single framework would be preferable.

Causal Strength Learning

For these reasons, subsequent theories have proposed causal
representations as opposed to associative ones. Cheng’s (1997)
power PC theory (short for a causal power theory of the probabi-
listic contrast model) assumes an a priori assignment of causal
roles to variables of interest and a causal learning process that aims
to induce the causal power of the putative cause to bring about the
effect. In this theory, causal power is construed probabilistically,
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as the extent to which the putative cause changes the probability of
the effect in the absence of other causes. This consideration of
alternative causes solves many of the problems of associative
theories, as the power of a cause to bring about an effect is judged
by considering only cases in which the effect would not have
happened otherwise.

AP and power PC and their variants have been successfully
applied to model many causal learning experiments although there
is an ongoing and vigorous debate concerning which theories have
the most empirical support (see Hattori & Oaksford, 2008). One
limitation of theories of this type is their lack of generality. Causal
learning is conceptualized as inducing the strength of the link
between a single target cause and effect, with the causal role of the
cause and effect specified a priori. However, causal learning often
requires inducing causal knowledge beyond the strength of a
particular relation; a learner might want to induce the causal
structure relating several variables rather than or in concert with
causal strength.

Causal Structure Learning

Whereas a causal strength inference aims to induce the strength
of a particular causal relation that is already known, a structural
inference induces how multiple variables causally relate: what
causes what, and how causes combine to bring about their effects.
This kind of information can be represented in a causal Bayesian
network (Pearl, 2000), a graphical representation of the causal
structure of a domain that also represents the probability distribu-
tion that describes events in the domain. More formally, causal
Bayes nets are graphs composed of nodes representing events or
properties and directed edges representing causal relations be-
tween those events or properties, with the network parameterized
to represent the joint probability distribution defined over all
values of the nodes. Because causal Bayes nets are consistent with
probability theory, inferring their structure and parameters can be
accomplished by statistical algorithms that attend to the patterns of
covariation among the events and properties. Various structure-
learning algorithms have been proposed as psychological theories
of causal learning (Gopnik et al., 2004; Griffiths & Tenenbaum,
2005).

The AP and power PC equations can be interpreted as parameter
estimations over causal Bayes nets (Glymour, 2001; Griffiths &
Tenenbaum, 2005). For example, consider a causal structure with
a target cause, an effect and an alternative cause (a common effect
model), in which the causes are related to the effect by a noisy-or
gate. A noisy-or is a probabilistic version of an inclusive-or. Each
cause alone leads to the effect with some probability and when
multiple causes are present, the likelihood of the effect is even
higher, increasing according to the independent contribution of
each cause. In such a situation, the power PC equation is the
maximum likelihood estimate of the causal strength of the link
from target cause to effect. The noisy-or gate or the closely related
multiple sufficient causes schema (Kelley, 1972) is central to many
types of causal inferences. This could help explain causal power’s
empirical support.

Irrespective of the particular learning algorithm, the notion that
causal learning entails inferring the structure and parameterization
of a causal network on the basis of covariation is a powerful idea.
It is general in the sense that inferences about causal structure and

strength are addressed naturally within the same framework, and
the framework can be accommodated to any background assump-
tions about functional relations between events such as generative,
preventive, and enabling causes. The approach is also flexible in
that it allows for learning complex causal structures absent specific
a priori knowledge. Further, predictions in this framework are
consistent with probability theory. This gives the framework mo-
tivation on the assumption that people’s causal beliefs about events
are to some extent adapted to the probabilities of those events.

Problem of Complexity

These approaches all agree that covariation is the primary input
to the learning process, but they are unlikely to offer plausible
models of human learning if calculating covariation is computa-
tionally challenging. Learning the strength of relation from a single
putative cause to a given effect can be accomplished with rela-
tively simple learning algorithms, though even in such cases peo-
ple’s judgments are quite variable, especially when data are pre-
sented serially (e.g., Buehner, Cheng, & Clifford, 2003). As the
problem is generalized to learning causal structure and strength
with more than two variables, the computations required become
psychologically implausible and even intractable. For example,
learning the structure of a two-variable system necessitates con-
sidering three possible acyclic structures. Adding just one more
node increases that space of possibilities to 25. Causal systems in
the world have many more variables than that. Consider learning
how a bicycle works or how to play a video game.

The problem of complexity is often underappreciated because
learning models are usually tested in contingency learning para-
digms in which the task is to determine the strength of a single
causal link between a prespecified cause and effect. However,
several recent experiments have tested people’s ability to make
somewhat more complex causal structure inferences from obser-
vations of covariation. These experiments have varied in whether
causal roles are predefined, in the number of variables in the
system, in the mode of data presentation, and in the cover stories.
Yet a common finding is that given just observational data, par-
ticipants’ inferences are strikingly suboptimal.

In Lagnado and Sloman’s (2004) Experiment 1, participants
were asked to infer the structure of a three-variable probabilistic
system by observing trials of covarying events. Participants ob-
served the system 50 times, sufficient in principle to recover the
true structure, yet only 5 of 36 participants chose the correct
model, a proportion consistent with chance responding. Steyvers,
Tenenbaum, Wagenmakers, and Blum (2003) tested causal struc-
ture inferences using a similar set-up. In the observation phase of
Experiment 2, participants chose the correct structure only 18% of
the time. Because selections were scored as incorrect even if the
selected model fell into the same Markov equivalence class as the
correct model and was therefore indistinguishable on the basis of
the observational data, this 18% was significantly higher than
chance and better than Lagnado and Sloman’s participants but still
well below optimal. A third example comes from White’s (2006)
Experiment 1. Given the suboptimal performance in these other
experiments, he used a simplified paradigm with fully determin-
istic causal links and observational data in the form of written
sentences expressing co-occurrence of population changes for dif-
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ferent species in a nature reserve. Again, performance was no
better than chance.

Evidently, observation of covariation is insufficient for most
participants to recover causal structure. This casts doubt on purely
covariation-based accounts as comprehensive models of causal
learning. Power PC theory and learning algorithms for causal
Bayes nets are usually construed as computational-level accounts
(Marr, 1980), intended to express an optimal solution to the
computational problem the system is trying to solve, and they
allow for psychological processes that only approximate these
optimal computations. But computational models only have psy-
chological plausibility to the extent that they can account for
behavior, and if people really are deficient at computing causal
structure from covariation, then these theories are at best incom-
plete.

Causal Learning Is Local

We propose that causal structure learning is accomplished by
local computations. The locality of causal learning has two related
aspects. First, causal learning is structurally local. When faced
with a complex learning problem involving several variables,
people break the problem up by focusing on evidence for individ-
ual causal relations rather than evidence for fully specified causal
structures. Structural inferences are accomplished by combining
these local inferences piecemeal. Second, learning is temporally
local in that people tend to prefer cues to structures that are easily
accessible and do not tax computational resources like short-term
memory and attention. Thus cues to structure that are available at
a particular point in time are preferred over those that involve
aggregating information over many trials. Causal structure is in-
ferred from a series of observations by serially updating a single
hypothesized causal model that is composed of the union of all the
locally learned causal relations.

This approach can account, first, for the fact that people learn
causal relations from small amounts of data. Often, a single trial is
sufficient. Second, like many domains of human cognition, causal
learning is subject to systematic and counternormative biases.
Finally, people use cues beyond covariation, like temporal infor-
mation, mechanistic knowledge, and interventions to learn causal
structure. In line with these findings, local computations allow for
rapid learning because of their local focus, they need not respect
normative prescriptions, and they are sensitive to cues other than
covariation, cues available on individual learning trials. Local
computations make minimal demands on memory, as only a single
hypothesis needs to be maintained, namely the structure composed
of all the locally-learned connections, and statistical information
need not be tracked or aggregated over trials.

Waldmann, Cheng, Hagmayer, & Blaisdell (2008) propose a
single-effect learning model to explain two findings that provide
compelling evidence for structural locality. First, rats exhibit a
particular type of second-order conditioning (Pavlov, 1927/1960).
When a unitary stimulus is paired with two different effects on
separate trials in training, a rat will learn a dependence between the
two effects despite the fact that they are presented separately. An
example is provided by Blaisdell et al. (2006) who trained rats with
interleaved trials of a light followed by food and a light followed
by a tone. The tone and food never appeared together on any
training trials so they were strongly anticorrelated. Yet, in a test

trial when the tone was presented by itself, the rats looked for food.
One interpretation of this finding is that the rats reasoned diag-
nostically to the presence of the light from the tone and then
causally to the presence of food from light. In other words, rats
appeared to make inferences consistent with a common-cause
model despite the strong anticorrelation of the effects in the training.
According to the single-effect learning model, this result can be
explained by assuming that the rat learns each cause—effect relation
one at a time in training and that causal inferences in test trials are
accomplished by chaining together inferences about individual rela-
tions. This local learning strategy may be due to processing limita-
tions. In early trials, attention to the presence of the cause and the
effect requires significant resources and rats fail to consider the
absence of the other effect. After many trials, however, rats do
show conditioned inhibition between the effects implying that
resources are freed up to attend to the anticorrelation (Yin, Barnett,
& Miller, 1994).

Further evidence comes from human learning. Hagmayer and
Waldmann (2000) trained participants on data from a common
cause whereby a genetic mutation produced two substances. As in
Blaisdell et al.’s (2006) experiments, participants learned about the
links one at a time. They were told that the two substances were
studied at separate universities and then observed trials in which
the mutation was present or absent and one or the other substance
was present or absent. After learning, they observed new cases
with or without the mutation and had to judge in each case whether
the two substances were also present. A judgment of the correla-
tion between the two substances was recovered, and the correlation
was positive, suggesting that participants had local knowledge of
individual causal relations that they combined to make trial-by-
trial predictions. However, when in a second task, participants
judged the frequency of the second substance conditioned on a set
of trials in which the first substance was either present or absent,
they showed no awareness of the correlation. One interpretation is
that they did not understand explicitly that the local causal beliefs
implied a correlation or how to express this correlation as a
frequency judgment.

The local computational framework that we espouse here is
more general than Waldmann et al.’s (2008) single-effect learning
proposal. First, according to the single-effect learning model, links
are learned by computing causal power over a series of training
trials. We are not committed to such a computation. In our exper-
iments, participants observed small data sets, insufficient for reli-
ably estimating causal strength, and still made systematic struc-
tural inferences. This difference may be a function of the type of
tasks that the two theories are aimed at describing. We focused on
cases in which participants have some a priori knowledge about
causal strength and then are asked to make structural inferences
explicitly on the basis of a small number of observations. Wald-
mann et al. (2008) focused on cases in which participants had some
a priori constraints on causal structure, receive a lot of training
data, and then are asked to make trial-by-trial predictions. Under
those conditions, people may be motivated to deploy computa-
tional resources to compute or approximate causal strength. Here
we merely claim that doing so is not necessary for recovering
simple causal structures. We do not believe that causal strength
estimation from large numbers of identical trials is the most
important function of “ordinary” causal learning. Systems in the
world are often complex, and the data people observe are sparse
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and noisy. Under these conditions the motivation of causal learners
is to simply determine which causal links exist rather than to
estimate strength.

Second, we are not committed to the constraint that only single
links can be learned from a given observation. In our experiments,
participants sometimes made inferences about multiple links si-
multaneously, as when two effects of a common cause were
simultaneously present. Rather than constraining the computation
in terms of the number of links, we did so in terms of the notion
of locality, proposing that structural inferences were restricted to
the parts of the structure that were active or informative on a given
trial. This allows local computations to make predictions about a
more general class of structure learning problems.

Third, we focused on cues other than covariation as the input to
the learning process. As these cues tend to rely on the close
connection between causal and temporal relations that emerges
from the fact that effects never precede their causes, we referred to
the use of these cues collectively as temporal locality. The impor-
tance of cues beyond covariation has long been acknowledged in
philosophy, for instance by Hume (1777/1975) and increasingly by
psychologists (Einhorn & Hogarth, 1986; Lagnado, Waldmann,
Hagmayer, & Sloman, 2007; Shultz, 1982). Compared with co-
variation, cues such as temporal order, mechanistic knowledge,
and intervention provide information that is more readily accessi-
ble and less computationally taxing. Indeed, when put into conflict
with covariation data, people tend to base causal inferences on
these other cues, even when they are fallible (Ahn & Kalish, 2000;
Kuhn & Dean, 2004; Lagnado & Sloman, 2006; White, 2006).
Other cues are also important in the single-effect learning model as
they are used to differentiate cause from effect in the learning
phase. For example, Blaisdell et al.’s (2006) rats likely used the
temporal order of the light, tone, and food in training to induce
causal directionality.

Relation to Bayesian Models

Bayesian learning methods provide a counterpoint to local com-
putations because they are global in the sense of representing
causal structure learning as an optimal inference that compares
fully specified causal structures on the basis of covariation data
(Anderson, 1990; Griffiths & Tenenbaum, 2005; Steyvers et al,
2003). In a Bayesian inference, belief about which structures are
more plausible a priori is combined with evidence for particular
structures provided by new data. Assuming an appropriate likeli-
hood function, Bayesian models are prescriptive and thus serve as
a useful benchmark for human performance. We see little reason to
treat them as descriptively correct (Sloman & Fernbach, 2008).

Unlike Bayesian inference that explicitly represents uncertainty
over all hypotheses, a local computation considers only one hy-
pothesis at a time. The hypothesis is constituted by the union of all
causal links implied by local cues on individual trials. This dis-
tinction is key to distinguishing the two approaches empirically.
The lack of a hypothesis comparison process in local computations
allows for conditions under which structural inferences are incon-
sistent with statistical norms, such as extraneous links being in-
ferred when a simpler structure explains the data. The learner may
not realize that a simpler hypothesis is also consistent with the data
because only one hypothesis is considered. A particular instantia-
tion of this phenomenon is explored in the experiments.

Another difference is that according to local computations, the
structure hypothesis is built up over a series of trials. In the
absence of relevant prior knowledge, participants will never infer
links for which they have no evidence. This may seem like an
obvious desideratum of any learning process, but whether one’s
default assumption is the presence of a causal relation or the
absence of one may depend on how common one believes that
causal relations are. This kind of a belief can be embodied in the
prior distribution of a Bayesian model. In the case of local com-
putations, the learning process itself enforces parsimony.

Overview of Experiments

To test the local computation idea, we offered participants in our
experiments a cue that allowed them to reconstruct a generative
causal structure by making local inferences from data. We used a
cue that has been an active target of causal learning research,
intervention (cf., Lagnado & Sloman, 2004; Schulz, Kushnir, &
Gopnick, 2007; Steyvers et al., 2003). Participants observed inter-
ventions on a system of three slider bars, and the slider that was
intervened on was identified. Because sliders could only move if
intervened on or if their causes were active, interventions provided
implicit temporal information, namely that any active sliders must
have moved after the intervened-on slider. We hypothesized that
participants would compute locally, using the implicit temporal
cue provided by the intervention as a guide to piece together causal
structure over multiple observations.

Causal chains offer a good test case for local computations.
Chains are networks with a link from one variable to another and
from the second to a third, and so on, depending on the length of
the chain. Consider a simple three-variable causal chain in which
A causes B and B causes C. Interventions on the root variable, A,
will tend to activate both B and C, B directly and C indirectly
through B. Absent any other cues, the implicit temporal cue is a
faulty guide to the relation between A and C, because it implies a
direct relation while in reality the relation is indirect. The implicit
temporal cue suggests that the root variable A happened first and
that B and C were effects, but it provides no information about the
relation between B and C. Thus, a learner using local computations
would spuriously infer the existence of a link between A and C.
Subsequent interventions on B that activated C would lead to
inferences of a link from B to C, and given sufficient data, the
learner would infer a causal structure including both links of the
chain and a link from the root variable to the terminal variable. We
refer to networks that have this form as confound models. Exam-
ples of a chain model and a confound model are shown in Figure
1. A common cause model is also shown for comparison.
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Figure I. A chain model, a confound model, and a common cause model.
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All three experiments investigated induction of causal chains
from observations of interventions on a system of causally related
slider bars. In Experiment 1, we compared inferences given data
from different generative models, common causes, and chains. The
implicit temporal cue provides a reliable cue to structure in the
former but not the latter case, and we predicted that inferences
from common cause data would be close to optimal while partic-
ipants would systematically infer confound models given data
from causal chains. In Experiment 2, we explored whether the
order of data presentation could affect inferences (cf. Ahn &
Dennis, 2000; Collins & Shanks, 2002; Dennis & Ahn, 2001;
Lépez, Shanks, Almaraz, & Ferndndez, 1998). In accordance with
our Bayesian model representing a principled learner who consid-
ers all hypotheses, all data were treated equally. Given the serial
nature of local computations however, the hypothesis under con-
sideration was different at different points in the series of inter-
ventions. This implied that people may make different inferences
depending on how data bear on the current hypothesis. In Exper-
iment 3, we explored the conditions under which participants could
induce chain models. We varied the instructions and practice trials
to push participants to take a more global perspective by explicitly
teaching them about the possibility of different causal models.

Experiment 1

In Experiment 1, we compared learning of chains and common
cause models. The implicit temporal cues provided by interven-
tions on a common cause are a reliable guide to structure. An
intervention on the root variable will tend to activate both of the
other variables implying the appropriate causal relations while
interventions on the other variables will have no effect. Local
computations should result in inferences of common cause models
with very small amounts of data.

In the case of chain models, the local computations model leads
to inferences of confound models, as discussed earlier. A confound
model in this case is not inconsistent with the data. Confound
models make qualitatively the same predictions as chain models
with respect to interventions on the root variable and the interme-
diate variable. But the link from the root variable to the terminal
variable is not necessary to explain the data. Absent data to choose
between the two on quantitative grounds, a principled learner
might choose the confound model if he or she believes that causal
links are common or might choose the chain if he or she believes
they are rare.

To distinguish local computations from a more principled
Bayesian computation with a preference for complex structures,
we included trials in which the data were insufficient to recover the
true structure. Sufficient data mean that there is at least one
effective intervention on each of the root and intermediate nodes in
the chain. If either or both of those interventions are not observed,
the local computations model predicts that participants should
infer the structure with the fewest links consistent with the data.
Conversely, a Bayesian model with a preference for complexity
favors structures with additional links.

For example, consider a single intervention on the intermediate
variable that activates the terminal variable. According to local
computations this implies a causal structure with a single link from
the intermediate variable to the terminal variable. According to a
Bayesian model that considers all hypotheses, this intervention is

equally consistent with several models such as the model inferred
by local computations, a causal chain, a common cause, and a
confound model. The choice between them is dictated by the prior.
Learning from local computations thus makes the distinct predic-
tion of confound model inferences given sufficient data from a
chain model, along with a general preference for simpler structures
in other cases.

To test these predictions, we presented three binary slider bars
on a computer screen, and participants were told that their task was
to identify the “hidden connections between the sliders that cause
some sliders to move when others move.” This task was chosen to
minimize a priori assumptions about causal structure or mecha-
nisms created by a cover story. Varying the causal model gener-
ating the data across trials was simply a matter of changing the
conditional probabilities governing slider movements, so we were
able to test various causal models with the same materials.

Method

Participants and design. Sixteen Brown University students
were paid $5 each for a single session lasting about 1 half-hour.
Generative model (chain vs. common cause) was the only inde-
pendent variable and was tested within participants. Two chain
models and two common cause models were used (Figure 2). Each
participant completed 40 trials, 10 each for each causal model. We
use the word trial to refer to a set of five observations of inter-
ventions and their effects governed by a particular causal model,
and the subsequent causal structure inference. The 40 trials were
blocked into groups of four. In each block of four trials, each of the
four causal models was used as the generative model once. Pre-
sentation order of the four models was randomized in each block.

The dependent measure was which causal model was inferred.
Participants were able to choose any combination of causal links
that did not produce cycles. They could thus infer one of 25 valid
models including one with no links, six one-link models, six
chains, three common cause models, three common effect models,
and six confound models.

Procedure and stimuli. The experiment consisted of three
parts: instructions, practice trials, and experimental trials. Partici-
pants first saw brief instructions on a computer screen that told
them that they would observe the movements of sliders and be
asked to guess the hidden connections between them. They were
also informed that connections were probabilistic and directed.

Next they completed two practice trials. We eliminated the
possibility of introducing bias by having the practice trials consist
of just two sliders. In the first practice trial, the generative model
was A causes B and in the other, B causes A. The top half of the
screen showed two grey binary sliders, 3 cm wide and 8.5 cm high.
Each slider had a 1.5-cm square white label beneath one marked A

Chain
Models

Common Cause
Models

Figure 2. The four generative models tested in Experiment 1.
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and the other B. Prior to each intervention, both sliders were in the
“down” position. Interventions and slider movements in the prac-
tice trials were controlled so that each participant saw the same
pattern of data. The label of the intervened-on slider flashed red
three times prior to the movement of the sliders and remained red
throughout the course of the intervention. In the practice trials, a
slight temporal lag was inserted between the movements of the
intervened-on slider and other sliders to make the task easier for
instructional purposes. The bottom half of the screen showed
screenshots of the previous interventions from left to right in the
order they occurred. The screenshots were 5-cm square and de-
picted what appeared during the intervention on the top half of the
screen, indicating which variable was intervened on and its effects.
Participants pushed a button marked next to start the next inter-
vention that began after a 2-s delay.

After observing five interventions, participants were shown a
new screen asking them to choose the appropriate arrows indicat-
ing the causal relations they ascribed to the model governing the
trial. The screen presented A and B labels and two arrows, one in
each direction between each label. Participants were instructed to
select the appropriate arrows with the mouse. When selected, the
arrows turned from gray to red. Feedback provided indicated
whether their selection was right or wrong. If the selection was
wrong, they repeated the practice trial until they inferred the
correct model. After completing both practice trials, they moved
on to the experimental trials.

The stimuli and procedure for the experimental trials were
identical except that there were three sliders—A, B, and C—dur-
ing the interventions, there was no lag between the intervened-on
and effect variables, and there were three labels and six arrows
(between each pair of labels) during the inference portions. Screen-
shots of the interfaces for observing interventions and inputting
inferences during an experimental trial are shown in Figure 3.

Slider movements in the experimental trials were stochastic.
Prior to each intervention, the system chose a slider to intervene on
at random with uniform probability. The current causal model
determined the movements of any other sliders, with the probabil-
ity of a slider moving given that its direct cause moved set to 0.8.
A slider could not move unless it was intervened on or its direct
cause was active. No feedback was provided and incorrect trials
were not repeated.

At all times there was a trial counter on the top left of the screen
indicating how many trials out of 40 had been completed and a
button marked instructions that the participant could click to view
the instructions again.

Results

Model selection. Model selections are depicted in Figure 4.
There was no difference between the two chains, x*(4, N = 16) =
6.3, p = .18, or common causes, x2(4, N=16)=1.6,p = .81, so
we collapsed the data for each pair. When the generative model
was a chain, confound models and zero- and one-link models were
predominant. When generative model was a common cause, com-
mon cause models and zero- and one-link models were predomi-
nant. The distributions in Figure 4 were compared to a chance
model defined as uniform selection from the set of possible mod-
els. Chi-square goodness of fit tests revealed significant deviations
of chain responses, x*(4, N = 16) = 86.4, p = 0, and common
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Figure 3. Top panel: Screenshot of the interface for observing interven-
tions, shown after the second of five interventions. Bottom panel: Screen-
shot of the interface for inputting inferences, shown after the participant
has chosen a single link from B to C.

cause responses, X2(4, N = 16) = 715.9, p = 0, from chance, and
from each other, X2(4, N =16) = 209.0,p = 0.

The learning data in this experiment were randomly selected and
therefore varied across participants. To get a quantitative measure
of performance that takes the data observed into account, we
compared learning models. We fit responses to a simple heuristic
model on the basis of local computations and to a Bayesian model
optimizing a particular objective function.

Heuristic model. According to the heuristic model based on
local computations, the intervention is treated as an implicit tem-
poral cue and a direct causal relation is asserted between an
intervened on variable and any other active variables. Causal
structure is built up over the course of the five interventions
serially by combining the links inferred on each intervention.

According to the heuristic model, participants should have dif-
ficulty inferring chains but should have no trouble inferring com-
mon causes given sufficient data. For example, in the case of an
A-causing-B-causing-C chain, a participant would rarely get evi-
dence for A-to-B and B-to-C links without simultaneous evidence
for an A-to-C link because A and B would rarely both be active in
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Figure 4. Model selection results for trials on which the

it was a common cause.

the absence of C. Thus, participants would tend to infer confound
models that included both links in the chain plus a link from the
root to the terminal variable. In the case of common cause models,
the participant would tend to see data consistent with a common
cause model and would never observe data consistent with spuri-
ous links. If the root variable was intervened on, the participant
would observe data that implied a link from the root to the other
variables, as in a common cause. If the other variables were
intervened on, no additional variables would be activated. For both
common cause and chain models, the heuristic model predicted
that given insufficient data to recover the true two-link structure,
participants would tend to infer the zero- or one-link structure that
is consistent with the data.

Bayesian model. The Bayesian model represents a principled
statistical inference of the best structure given the data and a priori
beliefs about which structures are more probable. By Bayes’ rule,
the posterior probability of a hypothesis, &, given data, d, is as
follows:

P(d|h)P(h)
> P(d|h)P(h)’

heH

P(hld) = (1

where P(dlh,) is the likelihood of the data under the hypothesis,
that is, how probable the given data are under the given hypothesis.
P(h,) is the prior probability of the hypothesis, the degree of belief
in the hypothesis before any data has been seen. The denominator
normalizes across all hypotheses, H, to generate a probability
distribution.

The model is initialized with a hypothesis space consisting of
all 25 possible acyclic, three-node causal models. Because
inferences are made after only five interventions, different
models will often have the same likelihoods. Choosing between
these models requires an inductive bias. Consider a single
intervention on B that activates C. This outcome is equally
likely under a number of hypotheses, such as a one-link model
with a link from B to C and a causal chain from A to B to C.
There is simply no information about the effects of A because
it has not been active. In such a case, it is reasonable to choose
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between these models on the basis of how likely one thinks that
causal links are in general. This belief can be represented in the
model as a parameter that determines the prior probability of a
hypothesis on the basis of how many links it has; that is, an a
priori bias for simpler or more complex structures. This param-
eter was fit to the data and the prior distribution was calculated
according to the following equation:

6—1;
p(hy) = 8

25

Ee—h

i=1

(2)

where p(h,) is the prior probability of the ith model, /; is the
number of links of the ith model and 0 is the parameter represent-
ing a bias to simpler or more complex models. The denominator is
a constant that normalizes the prior to a probability distribution. A
value of 0 greater than 1 results in a distribution with higher prior
probability on structures with few links (a simplicity bias) while a
value of 6 between 0 and 1 favors structures with more links. A
value of 6 equal to 1 results in a uniform prior.

We calculated the likelihoods using the true parameterization
from the experiment in which the probability of an effect in the
presence of its cause was set to 0.8 and the probability of an effect
in the absence of its cause was 0. Parameterizing the model with
particular values of these conditional probabilities drastically sim-
plifies the inference problem because parameter values do not have
to be estimated simultaneously with structure (cf. Steyvers et al.,
2003). In the case of a common effect structure, incoming links
were treated as combining via a noisy-or function.

The model represents an experimental trial consisting of an
inference after five interventions. The model calculates the poste-
rior distribution over hypotheses after the first intervention using
Bayes’ rule and the prior distribution and likelihood, and Bayesian
updating continues over subsequent interventions with the poste-
rior distribution from the previous intervention as the prior. This is
equivalent to calculating the posterior by multiplying the prior by
the joint likelihood of all the data rather than updating serially
because the interventions are independent. Thus the posterior



LOCAL COMPUTATIONS 685

probability of each structure can be calculated according to Equa-
tion 3 as follows:

P(h) [ [ PGl

jelJ

P(h)HP(Ah)}

jeldJ

(3)

>

heH

P(hi[jl’j27 .. ]i) = |:

where #; is the ith structure and J is the set of five interventions.

After all five interventions, the posterior distribution represents
the relative degree of belief over causal structures. In order to
generate predictions from the posterior, we tested two inference
rules, sampling and maximizing. In the case of sampling, the
model outputs a sample from the posterior distribution. In the case
of maximizing, the structure with the maximum posterior proba-
bility is output. In the rare case that more than one structure has the
maximum posterior probability, the model samples from those
structures uniformly.

Simulation details. To fit the heuristic model, we generated
predictions for each of the five-intervention trials observed by
participants, and the model was scored as correct if it output the
exact structure inferred by the participant. Because the heuristic
always outputs the same response given the same inputs and has no
parameters, the model only had to be run once for each participant.

Since the Bayesian model samples from the posterior, both in
the sampling version of the model and in the maximization version
when there are multiple maxima, the number of responses cor-
rectly predicted varies from run to run. We therefore ran each
simulation 100 times across all the data, ignoring which participant
they came from, and took the mean number of responses predicted
to represent model performance. Again, a response was scored
correct if it matched the participant inference. There was little
variance across runs of the models so the mean is a reliable
indicator of model performance.

Simulation results. Figure 5 depicts the percentage of re-
sponses predicted by each of the models, the heuristic model, the
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Bayesian model with maximization, and the Bayesian model with
sampling. For the Bayesian model, we tested various values of the
parameter 0. In general, the best fits had parameter values greater
than 1, indicating a preference for simplicity. Varying the param-
eter at values greater than 1 only led to marginal differences in
model performance. Figure 5 shows the results using the best
fitting parameters, 6 = 9 for the maximization model and 6 = 10
for the sampling model.

The best overall fits were obtained with the heuristic model,
consistent with the model selection results described earlier. A Z
test comparing proportions revealed a significant difference be-
tween the proportion of responses predicted by the heuristic model
compared with the Bayesian maximization model (Z = 8.9, p = 0)
and to the Bayesian sampling model (Z =10.6, p = 0). A param-
eter favoring simplicity in the Bayesian model trades off an ability
to account for zero- and one-link responses while failing to predict
confound models. Thus, the heuristic’s unique prediction of con-
found models along with a general preference for the simplest
models consistent with the data leads to better fits. The Bayesian
model obtained better fits with maximization than with sampling at
every parameter value greater than .2 due to the fact that partici-
pants were relatively consistent in their responses. Using the best
fitting parameters, predictions obtained with maximization were
better than those obtained with sampling, and this difference was
marginally significant (Z = 1.7, p = .08).

The models were also fitted to individuals using the overall best
fitting parameters, and those fits are shown in Figure 6. For
simplicity the results of the sampling Bayesian model are not
shown as they were lower than maximization. The heuristic model
predicts a high percentage of most participants’ responses. Of the
16 participants, 11 were fit better by the heuristic model, and all of
those differences were significant. Five were fit better by the
Bayesian model because those participants sometimes inferred
chain models rather than confound models. However, none of
those differences were significant.

Bayes:

Bayes: Sampling

Maximization

Figure 5. Percentage of overall responses predicted by each of the models.
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Figure 6. Percentage of responses predicted by the heuristic model and
the Bayesian maximization model for each participant.

Discussion

In Experiment 1, we tested people’s causal structure inferences
given observations of interventions on chain and common cause
systems. The results provide strong support for local computations.
In the case of common cause models where the implicit temporal
cue provided by the intervention is a reliable guide to structure,
participants’ inferences were close to optimal. In the case of
chains, participants systematically inferred an extraneous link from
the root variable to its indirect effect, the terminal variable, given
sufficient data to recover the true structure. Given insufficient data,
participants generally favored the most parsimonious structure
consistent with their observations, as indicated by the high corre-
spondence with the heuristic model. The overall pattern of results
was predicted by the heuristic model, which uses the implicit
temporal cue from each observation as evidence for a local causal
relation and builds up causal structure piecemeal over the course of
observations. It was inconsistent with the predictions of a Bayesian
model representing an optimal statistical learner.

One striking aspect of the results is the degree of systematicity
in responses despite only five observations supporting each infer-
ence, a pattern contrary to many of the causal structure learning
experiments discussed earlier. This speaks to the informativeness
of the implicit temporal cue provided by the intervention. Evi-
dently, learners find a cue that provides some information on each
learning trial very useful.

Participants were generally consistent in that they never inferred
chains when they preferred confound models, suggesting that they
may not have been aware of the possibility of chains. To test this,
we performed a Bayesian simulation with the prior on chain
models set to 0 and with a maximization inference rule. The best
fits obtained with this model were precisely the same as the fits
obtained with the heuristic. Assuming a relatively strong bias for
simplicity, such a model makes the same predictions as the heu-
ristic because without any posterior probability on chains, the
confound model is the most likely structure given data from a
generative chain.

The fact that the local computation heuristic makes the same
predictions as a Bayesian computation with a prior of 0 on chain
models shows that a simple heuristic can yield responses that are
close to optimal when the cues that the heuristic uses are reliable.
It also suggests two ways to interpret our findings. On one hand,
the heuristic account implies that participants’ difficulty in infer-
ring chains stemmed from a process that computed locally. On the
other hand, the Bayesian model suggests a statistically optimal
learner with an a priori bias against chain models. Computation-
ally, the two ways of understanding the results are isomorphic in
the sense that they yield the same predictions. However, the first
interpretation explains the findings in terms of the fundamental
assumptions of the theory, (i.e., the locality of computation), while
the Bayesian model can only account for the results in an ad hoc
manner by positing an extra parameter for the prior on chains.

Experiment 2

In Experiment 1, we compared inferences from causal chains
with common cause models in order to distinguish local compu-
tations from covariation-based models of learning. The design
capitalized on the emphasis of local computations on trial-by-trial
cues that can be fallible when they suggest spurious causal links.
In Experiment 2, we tested a different implication of local com-
putations, namely that people consider only a single causal struc-
ture hypothesis. In the global Bayesian computation, the learner
maintains a distribution of belief over all hypotheses, updated as
new data come in. Because interventions are independent of one
another, the posterior distribution after all data have been observed
is insensitive to presentation order. According to local computa-
tions, only one causal structure hypothesis is maintained, the union
of all the locally learned connections, and that hypothesis changes
over the course of observations. We hypothesized that inferences
may depend on the order of data presentation.

Consider once again the A-B-C chain model. Participants in
Experiment 1 tended to infer confound models after observing
interventions on this model. The confound model is not the most
parsimonious explanation, but it does account for the data. Partic-
ipants were unlikely to see any data that would allow them to
distinguish between chains and confounds over the course of five
interventions because an intervention on A tended to activate both
B and C. Evidence for an A-to-B link was almost always concur-
rent with evidence for an A-to-C link. An intervention on A that
activated just B would have been very unlikely, occurring on only
16% of interventions on A, but it also would have been highly
diagnostic of chains. Given a confound model, the likelihood of
seeing an intervention on A that activated B but not C was much
lower, because two causes must fail to bring about their effects.

Consider the presentation orders of interventions in Table 1. In
the first case, the diagnostic intervention occurs at the beginning of
the series. According to local computations, the learner has not
made any commitments about causal relations in the model. The
diagnostic intervention is still diagnostic of chains over confound
models in that it supports a link between the root and the inter-
mediate variable in the absence of a link between the intermediate
and terminal variables, but it is not inconsistent with the learner’s
current beliefs. In the second case, however, the diagnostic inter-
vention happens at the end when the learner has already built up a
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Table 1
Presentation Orders of Interventions on Causal Chains
in Experiment 2

Presentation order 1 Presentation order 2

Active Active
Intervention variables Intervention variables
Root* R, I Root R, LT
Intermediate LT Intermediate LT
Terminal T Terminal T
Root R, LT Root* R, I
Terminal T Terminal T

Note. R = root; I = intermediate; T = terminal. In the first condition, the
rare but diagnostic intervention in which the root and intermediate vari-
ables are active in the absence of the terminal variable occurs early. In the
second condition, it occurs late.

 Diagnostic intervention.

confound model and has beliefs that are inconsistent with a con-
found model. This is the difference we tested in Experiment 2.

There are four likely patterns of responses each consistent with
a hypothesis about how a learner might use the diagnostic inter-
vention. First, a principled learner calculating the likelihood of the
data under various hypotheses would infer chains regardless of
when in the series the diagnostic intervention occurs assuming no
strong a priori bias for confound models. Second, a pure-heuristic
learner, using the implicit temporal cue as the sole guide to
structure and without considering how new data bear on the
current hypothesis, would infer confound models regardless of
presentation order. In both of these cases, no order effect is
predicted.

The third case is a recency effect, in which late presentation of
the diagnostic intervention increases chain inferences. This pattern
is consistent with what we refer to as an accumulator. A learner of
this type uses local computations to determine a causal structure
hypothesis after each intervention and then engages in an assess-
ment process whereby the current data are compared to the current
hypothesis. The hypothesis may then be revised if the data are
sufficiently surprising or inconsistent with the current hypothesis.
In the case of the late presentation of the diagnostic intervention,
early local computations would lead to a hypothesis of a confound
model. The diagnostic intervention may cause the learner to reas-
sess the hypothesis and revise it to a chain model achieving greater
consistency with the data. In the case of early presentation, the
diagnostic intervention is consistent with the hypothesis derived
from local computations, a model with one link from the root to
intermediate variable, and no revision is necessary.

The fourth case is a primacy effect where early presentation
increases chain inferences. This effect is consistent with a “hy-
pothesis tester.” Such a learner is aware of which variables could
be active given his or her hypothesis. On a given intervention the
learner looks for active variables that are not predicted by the
model and adds links according to local computations to account
for any unpredicted variables. In such a case early presentation of
an intervention on A that activates B and an intervention on B that
activates C leads to a hypothesized chain structure via local com-
putations. The subsequent intervention on A that activates all the
variables is predicted by the chain hypothesis and no links are

added, resulting in a chain inference. When the diagnostic inter-
vention is presented late, the extraneous link from A to C is
asserted after the first intervention, when all variables are active.
The accumulator is liberal in asserting links but can then remove
them if necessary, while the hypothesis tester is conservative in
asserting links in the first place.

Method

Participants and design. Twenty-five Brown University stu-
dents were paid $5 each for 1 half-hour session. Participants were
randomly assigned to conditions, 12 to the early group and 13 to
the late group. The main independent variable, early versus late
presentation of the diagnostic intervention, was tested between
participants. The only difference between conditions was the flip-
ping of the first and fourth interventions on chain trials. There was
also a within-participants variable, chain versus common cause
model. Common cause models were included to create variance in
the data observed by participants. Three chain models and three
common cause models were tested (see Figure 7). For each group,
the pattern of data presented for each chain model was identical.
Data from common cause models were stochastic as in Experiment
1. Each participant saw 60 trials, 10 of each causal model. The 60
trials were blocked into groups of six, with each generative model
tested once per block. The order of the six models was randomly
determined in each block.

Stimuli and procedure.  Stimuli were identical to Experiment 1
except that in the chain model trials, the interventions and slider
movements were not stochastic but were predetermined as shown
in Table 1. The procedure was identical to Experiment 1 except
that there were 60 trials instead of 40.

Results

Model selection. Two participants in the late group responded
at random and were not included in subsequent analyses. Model
selection results for the early and late groups are shown in Figure
8. We compared responses to the three chains and common causes
by conducting chi-square independence tests for the distribution of
early-group chain responses, x*(4, N = 25) = 03, p = .98;
early-group common cause responses, x*(4, N = 25) = 2.0, p =
.35; late-group chain responses, x*(4, N = 25) = 1.7, p = .78; and
late-group common cause responses, (4, N = 25) = 3.1, p = 21.
Since there were no differences between models of the same type, we
collapsed across chains and common causes as in Experiment 1.

We compared the distribution of responses to chain trials across
groups using a chi-square test of independence yielding a signif-
icant difference, x*(4, N = 25) = 106.7, p = 0. Participants in the
late group were more likely to infer chains. There was no differ-
ence between early and late groups on common cause trials, x*(4,
N = 25) = 5.8, p = .21. The predominance of confound models

Chain
Models

Common
Cause Models

Figure 7. Six generative models tested in Experiment 2.
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Figure 8. Model selection results for trials on which the generative model was a chain and for trials on which
it was a common cause for early and late presentation of the diagnostic intervention.

from Experiment 1 was replicated, with the confound models
constituting the majority of responses to chain trials across both
groups. To see whether there was a learning effect over the course
of the experiment, we tested whether chains were more readily
inferred later in the experiment than earlier. A binomial test
revealed no such effect. Of the 106 times that chains were inferred,
57 of those were in the first half of the experiment and 49 were in
the latter half (Z = .77, p = .44).

Simulation results. The results were fit to the two learning
models as in Experiment 1 (Figure 9). For the Bayesian model,
only maximization is shown as it obtained better fits than sam-
pling. The best fitting parameter discovered with the Bayesian
model was 6 = 1. Note that unlike Experiment 1, the best fitting
parameter did not favor parsimony. This happened because on
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Figure 9.

Late Group

each chain trial, sufficient data were presented to recover the true
structure so on average, participants inferred more confound mod-
els and fewer zero- and one-link models than in Experiment 1. This
made it difficult for the Bayesian model to obtain reasonable fits
with a prior that favored simpler models. Overall, the heuristic fit
the data for both the early and late groups better than the Bayesian
model and both differences were significant (early group: Z = 5.9,
p = 0; late group: Z = 4.9, p = 0). Model fits to individual
participants are shown in Figure 10.

Discussion

In Experiment 2, we found that the order of data presentation
affected causal structure learning. Specifically, participants were

Overall

BOBayes Maximization

Percentage of responses predicted by each of the models for the early group, late group, and overall.
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Figure 10. Percentage of responses predicted by the heuristic model and
the Bayesian model for each participant, by group.

more likely to infer chain models over confound models when a
particularly diagnostic intervention occurred late in learning. We
also replicated the predominance of confound model inferences
from Experiment 1. Even given the diagnostic intervention, which
is highly unlikely to come from a confound model, participants
still tended to infer confound models over chains across both
conditions. This underscores the powerful influence of local cues
on learning and is evidence for local computing. The superior fits
of the heuristic model in both conditions also supported this
conclusion.

The recency effect that was observed is consistent with an
accumulator learner because his or her learning process involves
accumulating causal links according to local cues and then revising
the hypothesis in the face of inconsistent or surprising observa-
tions. The effect of presentation order is not predicted by the
simple heuristic described earlier. Rather, the effect can be under-
stood to be the result of an error correction mechanism that reacts
to data that disconfirm the locally learned hypothesis, and the
differential effect of early versus late presentation of the diagnostic
intervention supports the notion that a single hypothesis is updated
over the course of learning. The fact that we observed a recency
rather than a primacy effect speaks to the automatic application of
local heuristics. Our results suggest that causal links are learned
liberally via local computations and sometimes are subsequently
pruned in the face of inconsistent observations. If participants had
used a more active hypothesis-testing strategy, then early presen-
tation of the diagnostic intervention would have yielded more
chain responses because in those cases the chain model would
have been a good explanation for the activation of the terminal
variable, and there would have been no reason to add the spurious
link. Instead, participants who showed the order effect revised
their hypothesis reactively in the face of data inconsistent with
their hypothesis, the failure of the terminal variable to activate.

Despite the presence of an order effect, the simple heuristic was
able to account for the majority of responses. The finding that a

minority of participants were able to engage in error correction
leading to optimal responding implies that given sufficient effort,
learners can sometimes adapt flexibly to the available information,
a point supported by Steyvers et al.’s (2003) finding of clusters of
participants who were substantially better than others at learning
from covariation data. The fact that we observed the recency effect
hints that a common, low-effort local computation may underlie
human competence in general but that some participants are able to
deploy a more deliberative strategy to augment performance in the
face of counterevidence.

One might argue that a covariation-based model could explain
an order effect if it were augmented with a constraint on which
interventions enter into the likelihood calculation. For instance one
might assume that people attend differentially to late trials and
base the calculation of the likelihood on the last n observations.
This could explain a recency effect because when the diagnostic
intervention comes early in learning, it might be ignored or for-
gotten. In that case, the relative likelihood of the confound model
would be higher than if the diagnostic intervention had come later
and had figured in the likelihood computation. We are skeptical
about this interpretation for three reasons. First, there does not
seem to be any good motivation for predicting a recency effect
rather than a primacy effect. If people are limited in the number of
interventions they can use for the computation, then they may
attend to early trials rather than recent ones. Second, recall that
participants could refer back to screenshots of the previous inter-
ventions, so memory demands cannot explain systematic disregard
for certain interventions. Third, this type of model does not ac-
count for the overall pattern of results from Experiments 1 or 2. If
there were systematic disregard for certain interventions, we
should have observed more sparseness in the causal links inferred
by participants. Instead, responses were generally consistent with
the heuristic that takes account of all five interventions.

Experiment 3

In Experiments 1 and 2, we found evidence for local computa-
tions in the tendency to infer extraneous links given observations
of intervention. However, the presence of an order effect in Ex-
periment 2 implied that local heuristics do not by themselves fully
account for causal learning. Rather some participants were able to
react to evidence contrary to their beliefs and generate responses
more consistent with the data. In Experiment 3, we investigated
how entrenched the heuristic was. We hypothesized that people are
not stuck using local computations but will consider hypotheses
from other sources if they are presented explicitly. We therefore
“primed” chain models by explicitly teaching participants about
them prior to testing, and we predicted that the manipulation would
improve performance relative to Experiments 1 and 2.

Two methods for increasing awareness of chains were tested in
a between-subjects design. The handout group received a descrip-
tion of causal models prior to the experiment. The description
included real-world examples of a common cause and a causal
chain that were presented graphically. The practice group received
no handout. Instead, their practice sessions consisted of two mod-
els with three variables, a chain and a common cause, rather than
two models with two variables as in previous experiments and the
handout group of Experiment 3. Participants in the practice group
had to repeat the practice trials until they inferred the correct
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structure. Thus, they learned to infer chain models in the experi-
mental context.

Method

Participants. Thirty-three Brown University students were
paid $5 for one session lasting one-half hour. Participants were
assigned randomly to the two groups, 16 to the handout and 17 to
the practice group. As in Experiment 1, generative model (com-
mon cause vs. chain) was a within-participants factor. Handout
versus practice was varied between participants.

Stimuli and procedure. Prior to beginning the computer por-
tion of the experiment, participants from the handout group re-
ceived a sheet of paper describing causal models and giving
examples of common cause and chain structures. The common
cause model was that smoking causes lung cancer and yellow teeth
and the chain model was that smoking causes lung cancer and lung
cancer causes death. Participants were told to read the handout
carefully and were observed to make sure they read it. After
reading the handout, the procedure was identical to that of Exper-
iment 1.

Participants in the practice group were not given the handout.
They received the same instructions as Experiment 1 and began the
practice trials. The practice trials consisted of two three-variable
models: a chain, B causes A causes C, followed by a common
cause, B causes A and C. The practice trials were the same as
experimental trials from Experiment 1 except that there was a
slight temporal lag to make the inference easier and the data were
not randomly generated. Rather the interventions and activated
variables were predetermined and always the same. Participants
repeated the practice trials until they inferred the correct structure.
After completing the two practice trials, the procedure was iden-
tical to Experiment 1.

Results

Model selection. Two participants in the handout group re-
sponded at random. Their data were not included in subsequent
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analyses. As in Experiments 1 and 2, there were no differences
between models of the same type—handout-group chains: x*(4,
N = 16) = 6.6, p = .15; handout-group common causes: X>(4,
N = 16) = 2.8, p = .24; practice-group chains: x*(4, N = 17) =
1.7, p = .42; and practice-group common causes: x°(4, N = 17) =
1.2, p = .55. We therefore collapsed across the two chain and
common cause models. Figure 11 shows the distribution of re-
sponses for common cause and chain trials for the practice and
handout groups. Experiment 1 results are also shown for compar-
ison. Chi-square goodness-of-fit tests showed that all four distri-
butions were significantly different from chance.

Both types of instruction increased the likelihood of correctly
learning chain models, with the practice manipulation having a
larger effect than the handout manipulation. The distribution of
responses to chain trials was compared across groups using a
chi-square test of independence that yielded a significant differ-
ence between responses in the practice and handout groups, x*(4,
N = 33) = 349, p = 0. Responses to common cause trials were
not significantly different across groups, x*(4, N =33) = 7.8,p =
.10. Comparison of responses on chain trials between the handout
group and Experiment 1, x*(4, N = 16) = 23.5, p = 0, and the
practice group and Experiment 1, x*(4, N = 17) = 102.0, p = 0,
yielded significant differences. Common cause responses between
the handout group and Experiment 1, x*(4, N = 16) = 3.9, p =
.42, and the practice group and Experiment 1, x*(4, N = 17) = 6.3,
p = .18, were not significantly different.

Simulation results. The heuristic and Bayesian models were fit
as in Experiment 1. For the Bayesian model, maximization always
led to better fits than sampling, so for simplicity, only maximiza-
tion results are shown. Figure 12 depicts model fits for the heu-
ristic and for the Bayesian model with maximization for each of
the groups and for Experiment 1. As in Experiment 1, varying the
parameter as long as it was greater than 1 only made marginal
differences to the fits of the Bayesian model, and results with the
best fitting parameter are shown, 6 = 8 for the handout group and
6 = 7 for the practice group. As suggested by the model selection
results, the Bayesian model’s performance improved from Exper-
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Figure 12. Percentage of overall responses predicted by each of the models for both Experiment 3 conditions

and Experiment 1.

iment 1 to the handout group and from the handout group to the
practice group due to more chain inferences. For the handout
group, the heuristic model predicted the higher overall proportion
of responses than the Bayesian model though this difference was
not significant (Z = 1.7, p = .10). For the practice group, the
Bayesian model achieved a better fit, and this difference was
significant (Z = 3.1, p = 0).

The models were also fit to individual participants, and those
results are shown in Figure 13. In all groups, a subset of partici-
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Figure 13. Percentage of responses predicted by the heuristic model and
the Bayesian model for each participant in the handout group and the
practice group.

pants was fit very closely by the heuristic, implying consistency in
inferring confound models over chains; however, the proportion of
those participants decreased as chains were primed and chain
inferences became more prevalent. Z scores for the proportions of
responses predicted were calculated and showed that in the hand-
out group, four participants were fit significantly better by the
heuristic and two by the Bayesian model. In the practice group,
two were fit significantly better by the heuristic and six by the
Bayesian model.

Discussion

As predicted, participants’ ability to infer chain models over
confound models increased when they were taught about chains in
Experiment 3. The effect was stronger in the practice group,
implying that learning to infer chains in the context of the exper-
imental materials was more helpful than learning about a particular
real-world example. While the overall beneficial effect of training
may not be surprising, what is surprising is that despite the priming
of chain models, a subset of participants in each group still
behaved like the participants in Experiment 1 and was fit well by
the local computations heuristics. The results thus reveal when the
heuristic model we propose is applicable and when it is not. Local
computations are a default that can be overcome by effort or by an
environment that provides more support.

The relative success of the Bayesian model when people were
taught about chains shows that people were able to learn these
simple three-variable causal structures when given a cue to con-
sider one of those structures. The effect of this teaching could be
modeled in a Bayesian framework as a change in people’s prior
probabilities over causal structures, a low prior for chains when
they are not taught and a higher prior when they are. Although this
is descriptively correct, we do not see that it provides any added
explanatory value.
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General Discussion

Summary

Over a series of three experiments, we find that people (a) fail
to learn chain models because they frequently incorrectly infer
extraneous causal links (Experiments 1 and 2); (b) correctly learn
common cause models from small amounts of data (Experiments 1
and 2); (c) tend to find support for structural hypotheses that are
consistent with the most recent data that they see (Experiment 2);
and (d) take into account hypotheses that are explicitly presented
(Experiment 3). The data from Experiments 1 and 2 were fit
closely by a heuristic model based on the idea that causal structure
is built up from trial-by-trial inferences of local relations. To-
gether, the evidence suggests that people use local computations as
a simplifying strategy—a heuristic—to learn causal structure from
data. Sometimes people use more sophisticated strategies that
involve considering structural relations that span more than a
single link. Experiment 2 shows that such strategies are more
likely in the face of data that are inconsistent with the locally
learned structure, and Experiment 3 shows that appropriate train-
ing leads to consideration of alternative, simpler causal structures.
The current results do not provide unique support for a particular
model to explain these deviations from local computations.

Implications

The local computations framework explains why people are
poor at using covariation among variables to learn causal structure.
When only covariation cues are provided (e.g., Steyvers et al.,
2003, Experiment 1), most people lack the resources to make the
necessary computations. In contrast, when local cues are provided,
they lead to more consistent responding but also sometimes to
error. For instance, in Lagnado and Sloman’s (2004) experiments,
when data were produced by a causal chain (A causes B causes C),
people tended to believe that they were produced by a common
effect model in which A and B independently caused C. This is
consistent with the local computation framework because, due to
the cover stories used in those experiments, participants knew
which variable represented the ultimate effect in the causal system.
Thus, on each trial in which the effect occurred, any other active
variable was identified as a cause of that effect. As in our exper-
iments, this inference was faulty, implying independence between
the two causes and direct relations between the causes and the
ultimate effect.

The local computations framework is also consistent with other
causal learning phenomena. For instance, in our experiments,
participants tended to infer extraneous causal relations on the basis
of local cues. Previous research with pigeons (Skinner, 1948) and
humans (Ono, 1987) has shown learning of spurious relations on
the basis of temporally contiguous actions and outcomes, even
when the outcomes are independent of the actions, a type of
learning referred to as superstitious. For example, Ono’s partici-
pants tended to repeat an idiosyncratic series of actions that im-
mediately preceded reward, even when rewards were delivered at
a constant rate that was independent of the actions. The local
computations account of this finding is that participants used the
local temporal cues to learn a relation between the actions and
reward while failing to recognize the independence of the two.

Inferring independence would have required tracking and aggre-
gating covariation information over multiple trials.

Another aspect of learning that is problematic for covariation-
based accounts but that falls naturally out of local computations is
single-trial learning (Guthrie & Horton, 1946). Animals and hu-
mans often infer a causal relation on the basis of a single obser-
vation of two temporally contiguous events. This is inconsistent
with the idea that causal relations are learned by estimating causal
strength over many training trials. Rather, causal relations can be
learned from even a single observation.

Conclusions

The mix of individual strategies observed in Experiments 1 and
2 and the finding in Experiment 3 that chain hypotheses were more
likely to be considered after pretraining on chains shows that local
processing can be overcome by consideration of higher order
causal structures. This suggests that (at least) two processes are
involved in causal learning, a local heuristic process and a more
sophisticated one that is able to consider how well global hypoth-
eses fit the data.

Learning causal structure locally is an excellent way to combine
multiple sources of knowledge. Some causal relations we learn
from doing; others we learn from observation; still others we learn
from instruction. Each causal relation can be difficult to learn,
especially when it reflects a complex mechanism. Learning rela-
tions independently allows us to focus on specific mechanisms
while ignoring others, at least temporarily. This may be the only
way to learn causal systems involving dozens of variables or more,
like social systems, car engines, or word processors. The unfortu-
nate consequence of using a heuristic that minimizes memory and
computational demands is that it leads to systematic error. Errors
may be exceptional when dealing with an expert, but in this case
they very much prove the rule: One can hardly deny the presence
of systematic error when people, even experts, are dealing with
social systems, car engines, or word processors.
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