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Our goal in this chapter is a rational analysis of human causal reasoning and learning.
We take a rational analysis to be an assessment of the fit between data and a certain
kind of model (Danks’s chapter offers a more multi-faceted view of rational analysis).
In the rational analysis tradition of Anderson (1990) and Oaksford and Chater (1998;
in press), the term ‘rational’ has come to have three different meanings that vary in
normative force. The first section of this chapter will be devoted to explicating these
different meanings and evaluating their usefulness. The second section will apply
these interpretations to assess the rationality of causal reasoning and learning.

The value of a rational model
In the rational analysis tradition, ‘rational model’ and ‘computational model’ tend to
be used synonymously (e.g., Griffiths et al., in press). Danks (this volume) challenges
this equation. According to Marr (1982), who introduced the computational level of
description, a computational model describes the goal of a computation, why it is
appropriate, and the logic of the strategy by which it can be carried out. What is miss-
ing from Marr’s analysis is what determines the computation. Is it determined
through an analysis of the task or must the analyst first observe what computation is
actually being performed before engaging in a computational analysis? This is the
critical question in determining whether or not a computation is ‘rational.’ Here are
three different senses of ‘rational model’:

Normative model
This sense of rational model has its origins in Savage’s (1972) analysis of subjective
probability, a concept whose influence in psychology is primarily due to Kahneman
and Tversky (1982). A rational model in this sense is a representation of the best way
to perform a task. Given some goal, a normative model dictates what is necessary to
achieve that goal. For instance, in the context of causal reasoning, if a machine is bro-
ken, a normative model might dictate the most cost-effective action to fix it.
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The construction of normative models is a critical theoretical activity for two rea-
sons. First, it is necessary for evaluating how well people perform. Normative models
define optimal performance (relative to some goal) and in that sense set the standard
for determining the validity of human judgment. Second, a normative model is neces-
sary for isolating cognitive processes. On the assumption that people try to perform
tasks well, people will always attempt to perform according to normative dictates.
Therefore, good performance is a result of both cognitive processing and the con-
straints imposed by a task. But there is no way to distinguish the contribution of each
and thus isolate the role of cognitive processing when performance is accurate. Only
errors make the distinction possible because only errors do not reflect task constraints
and thus must reflect cognitive processes. However, errors are defined in contrast to a
normative model, a model of correct performance. In this sense, error provides a win-
dow onto processing, and the nature of processing can only be inferred in light of a
normative model. Other aspects of processing, like time course or neural locus, don’t
necessarily require a normative model but often benefit from one.

The brunt of a normative analysis is to show that a particular type of model describes
the best way to perform a task. That’s the very object of a normative analysis; to show,
for instance, that a Bayesian model of a task is normative for that task. In that sense,
the modeling framework used to perform this kind of rational analysis is valid by
hypothesis. It is not merely assumed, used for expository purposes, or used as a source
of theoretical ideas. It is the object of evaluation. This distinguishes this form of
rational analysis from the type espoused by Oaksford and Chater (in press), as we dis-
cuss below.

Normative analysis in the face of resource constraints
The type of normative analysis inspired by Simon (1955; 1956) evaluates perform-
ance not only with respect to the constraints imposed by a task – how best to perform
a task – but also by the constraints that come to the task with the performer (cf.
Cherniak, 1986; Harman, 1995). The performer has only limited time and energy,
limited working memory capacity, limited knowledge, etc. Performance can be evalu-
ated with respect to a model that describes optimal performance given a set of a priori
constraints of this kind.

As long as the constraints are a priori and not chosen to make performance look more
rational after the fact, this kind of model inherits the virtues of the simpler kind of nor-
mative model (i.e., type i). It defines a reasonable notion of rationality: doing the best
that one is able to in order to achieve a goal. Moreover, it defines a model that supports
inferences about the nature of processing. To the extent that a person deviates from the
dictates of this model, it must be due to the nature of his or her mental processes and not
to the constraints under which her or she is performing. In fact, it supports stronger
inferences than the first type of model because errors with respect to this type of model
cannot be attributed to the cognitive constraints that the model already embodies.

The costs of this kind of model are of two kinds. First, it is more complicated than
the first kind because it must represent additional constraints. Second, its validity is
more tenuous because it rests on more assumptions, namely that the constraints it
imposes are real.
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A model of what people are computing
The third sense of rational analysis, introduced by Anderson (1990) and further
developed by Oaksford and Chater (in press), involves incorporating performance
data into a normative modeling framework in order to use that framework to describe
what people are actually computing. Generally this involves first choosing a modeling
framework (normally Bayesian analysis) and then representing people’s task assump-
tions within that framework. This kind of analysis involves a modeling plus testing
cycle: A model is constructed out of a normative framework, its fit to data is assessed,
then the model is changed to accommodate deviations, again its fit is assessed, and so
on until an empirically adequate model is arrived at.

The model that results from this process does not have a claim to optimality or to
normativity in any other sense because it is evaluated empirically, not in terms of the
goodness of the actions that can be derived from it (Danks, this volume, argues that
both are necessary). Hence this modeling enterprise is essentially descriptive, not rational.
Once descriptive assumptions are incorporated, if those assumptions do not them-
selves have normative justifications, then any model that incorporates them has no
claim to rationality. If the assumptions do have normative justification, then they
should have been incorporated into the initial formulation of the model, because the
fact that they describe behavior adds nothing to the justification.

We consider two counterarguments to our claim. First, one might argue that a com-
putational model derived by embedding descriptive facts into a normative framework
inherits rational properties from the normative framework. Oaksford and Chater (in
press) argue that such a model will lead to ‘successful thought and action in the every-
day world, to the extent that it approximates the optimal solution specified by rational
analysis.’ (p. 32). If the model does approximate the optimal solution, then we tend to
agree. We do note though that approximating an optimal solution is not necessarily
the best that a constrained performer can do. In principle, a model that makes sys-
tematic errors can do better than a model that approximates optimality as long as the
degree of error of the first model is small relative to the closeness to optimality of the
second model. More crucially, we reject the rational inheritance argument because
new facts without normative justification have the potential to lead a normative
model completely astray; its recommendations for action can potentially be spectacu-
larly wrong.

To take a prominent example in the analysis of belief, one might argue against the
received wisdom that people’s probability judgments are non-Bayesian (Tversky &
Kahneman, 1983) by softening assumptions about what a Bayesian model should
compute. One might argue that in fact judgments are Bayesian, people simply use
unexpected prior probabilities in their computations (Tenenbaum & Griffiths,
2001a). We set aside whether people’s judgments can actually be explained this way
and focus instead on whether such an account would rationalize judgments were 
it able to fit the data. Clearly such an account, if valid, would reveal systematicity 
in people’s judgments and would in that sense provide a valuable descriptive model.
Were such a model descriptively valid, we might even say that people are ‘coherent’
in the sense that some beliefs could be derived from others (given the model).
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However, such beliefs – even if coherent – would not have any rational justification,
even partial justification. Prior probability distributions could be constructed that
would be guaranteed to render judgments that were close to useless (for instance, a
prior distribution that was the complement of true prior probabilities). The fact that
people are coherent does not provide a rationalization of their beliefs if they are con-
sistently wrong. It is easy to be coherent once you give up on accuracy.

The descriptive success of such a model does indicate that, at a coarse level, people
are sensitive to the variables that the normative analysis says they should be sensitive
to. For example, in the probability judgment case, the empirical success of a Bayesian
model with arbitrary priors suggests that people are sensitive to priors even if the spe-
cific priors that they use have no justification. More generally, the normative frame-
work plus descriptive facts approach does offer a method of demonstrating that
people are sensitive to cues that they should be sensitive to. Clearly though the
approach is overkill in this regard. An experiment that simply manipulated the rele-
vant cue and showed that people respond accordingly would allow the same infer-
ence. There is no need to quantitatively fit model to data to find this out.

We briefly consider a second prominent example of a model of this type, the
Oaksford and Chater (1994) interpretation of the Wason four-card selection task in
terms of optimal data selection. On one hand, we have great sympathy for the idea
that the Wason task asks participants to choose the experiments that would be
informative for determining the probability of a hypothesis (a conditional rule). The
Wason task is not a deductive task in that it does not ask about the deductive validity
of an argument. So far, the Oaksford and Chater insight strikes us as a radically new
and persuasive normative model of the task (a rational analysis of the first type). On
the other hand, Oaksford and Chater go beyond this rational analysis by invoking the
rarity assumption. This assumption turns out to be necessary to explain many of peo-
ple’s selections. The assumption of rarity makes sense in some contexts (the probabil-
ity of encountering a non-black thing is indeed incomparably higher than the
probability of encountering a black raven). But it doesn’t hold in general; specifically,
it doesn’t hold in the abstract Wason four-card selection task (relative to one another,
neither vowels, nor consonants, nor odd or even numbers are rare). Importing the
principle into the model therefore has only a descriptive motivation, not a normative
one that holds in general. The resultant model loses its rational basis once this
assumption is made. Assuming rarity can cause the selection of non-optimal data.

A second counterargument to our claim that the normative framework plus
descriptive facts approach does not provide a rational analysis is that, sometimes, we
can only discover people’s goals by examining their behavior. Once we see what they
have done, we can find a reason for it; i.e., we can construct a justification after the
fact. This position completely obscures the normative/descriptive distinction. Some
justification can indeed always be constructed after the fact but that justification has
no warrant to be called normative. Maybe people’s goals are not what we expected
them to be, but we cannot determine their goals and evaluate their procedure for
obtaining them from the same data. People are guaranteed to come out smelling of
roses that way. We might be able to determine what people’s goals are and how they
arrive at them via a modeling process like this, but in that case our method serves
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merely as a heuristic for constructing descriptive theories, not a rational justification
for behavior. Of course, there’s nothing wrong with constructing descriptive theories.
But calling them ‘rational’ just confuses the issue.

In sum, the normative framework plus descriptive facts approach to rational analy-
sis is not a rational analysis at all in the sense of having any normative justification.
The modeling framework used to perform this kind of analysis is not valid by hypoth-
esis. The hypothesis in this case concerns an aggregate of normative and descriptive
assumptions and thus cannot be shown valid by an analysis of the situation; perform-
ance itself must be considered. Therefore, what is learned is relative to independent
empirical demonstration. Descriptive models can and have emerged from this enter-
prise, but any claim to rationality is circular.

Are causal reasoning and learning rational?
Reasoning

Rational reasoning
Normative models of causal reasoning have attempted to justify causal claims using
counterfactual reasoning (Lewis, 1973), probability theory (Suppes, 1970), and a cal-
culus of intervention (Pearl, 2000; Spirtes et al., 1993; Woodward, 2003). Despite the
divergence of views about the foundations of causal reasoning, we believe that
philosophers and psychologists would mostly agree on what constitutes good causal
reasoning for the types of cases that we will focus on.

When reasoning about a well-defined situation, people tend to be highly sensitive
to the structure of the causal relations connecting events. An elegant demonstration
of this can be found in Cummins et al. (1991) and Cummins (1995) who asked peo-
ple to evaluate the strength of conditional arguments such as

If I eat candy often, then I have cavities.
I eat candy often.
Therefore, I have cavities.

Eating candy is a cause of having cavities but it is neither sufficient (regular tooth
brushing will prevent cavities) nor necessary (drinking soda pop can lead to tooth
decay even in people who don’t eat candy). So the causal relation invokes both dis-
abling conditions and alternative causes. If people evaluate conditional arguments by
reasoning causally – i.e., in a way that respects actual causal constraints that are gener-
ally known but not mentioned in the argument – then they will not find an argument
such as this highly compelling despite the fact that it seems to conform to a valid logi-
cal schema, modus ponens. And people don’t find it highly compelling. From this and
a number of related arguments, Cummins and her colleagues conclude that human
reasoning is more sensitive to causal content than to syntactic form. A corollary of
this conclusion is that people are effective at reasoning with causal structures that
involve a variety of disabling conditions and alternative causes. This explains why
people are so good at understanding conditional statements despite the range of
causal structures to which they can make reference (Bennett, 2003).
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Another normative constraint on causal reasoning is the need to distinguish inter-
vention and observation (Pearl, 2000; Spirtes et al., 1993; Woodward, 2003).
Observing an event licenses inference about that event’s causes. For instance, observ-
ing Team A beat Team B provides evidence that Team A is stronger than Team B (and
therefore, say, more likely to beat Team C). Intervening to produce the event blocks
such diagnostic inferences. If I drug Team B in such a way that they are guaranteed to
lose to Team A, then the loss no longer provides evidence that Team A is stronger than
Team B because the loss has an overwhelmingly strong alternative explanation,
namely my malevolent behavior. Strong interventions on an event cut the diagnostic
link from the event to its normal causes, eliminating some of the inferences that
would otherwise be possible. Understanding that intervention introduces temporary
independence between an effect and its cause is particularly important in the context
of decision making because choice is related to intervention (Meek & Glymour, 1994;
Sloman & Hagmayer, 2006).

People are exquisitely sensitive to the logic of intervention. Sloman and Lagnado
(2004) gave people simple and more complicated scenarios with well-specified causal
structures and then asked them to make inferences about the scenarios with counter-
factual conditionals. When the conditionals involved imagined interventions (e.g., if
the effect had been prevented), people were much less likely to infer a change in the
state of the cause than they did when the conditional involved an imagined observa-
tion (e.g., if the effect had been observed to not occur). People distinguished interven-
tions from observations whether the relations were deterministic or probabilistic. The
difference did not arise when the scenarios involved logical rather than causal rela-
tions. Waldmann and Hagmayer (2005) report supportive data in the context of rea-
soning and Hagmayer and Sloman (2007) find evidence for sensitivity to intervention
in the context of choice. Even rats are sensitive to the logic of intervention (Waldmann &
Blaisdell, this volume).

Another normative property of causal reasoning is screening-off (Pearl, 1988).
Screening-off relates statistical dependence and independence between variables to
structural relations among causes. The simplest case of screening-off arises in a causal
chain. If A causes B and B causes C and if the value of B is fixed, then A and C are
independent, P(C|A,B) = P(C|B). In other words, the influence of A on C is mediated
by B. Therefore, if the value of B is constant, A and C must be unrelated. Blok and
Sloman (2006) tested people’s sensitivity to this logic by giving people questions like
the following:

a. The power strip isn’t working, what’s the probability that the computer isn’t working?

b. The outlet and the power strip aren’t working, what’s the probability that the 
computer isn’t working?

On the assumption that the relevant causal model for both of these cases is
Power flow in the outlet → Power flow in the power strip → Power flow in the computer

Screening-off would dictate that the answer to the two questions should be the
same. Accordingly, Blok and Sloman found that the probability judgments did not
differ significantly. Moreover, most people agreed with the causal model. Note how-
ever that when the task was changed slightly, when people had to choose the case with
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the higher probability for the computer functioning, they chose a. more often than b.
Perhaps because of the presence of an apparently irrelevant cause, knowing the outlet
didn’t function made the causal argument that the computer wouldn’t function seem
weaker. Chaigneau et al. (2004) also report violations of screening-off with chain
structures but their stimuli came from a different domain. They described common
objects by their causal structures and then asked people to name them or to infer their
function.

Systematic error in causal reasoning
Several theorists have also argued that screening-off should occur for common cause
structures like the following (Pearl, 1988, 2000; Spirtes et al., 1993, but see Cartwright,
2002, for counter-arguments):

Power flow in the lamp → Power flow in the outlet → Power flow in the computer
In this case, the claim is that fixing the power flow in the outlet renders power flow

in the lamp and the computer independent. Any statistical relation between the lamp
and the computer’s power flow is due to their common cause, the outlet. So if power
flow in the outlet is fixed, there is no remaining source of covariation between the
lamp and the computer.

Blok and Sloman (2006) tested screening-off with common cause structures using
questions with the general form of a. and b. above. Violations were rampant. Knowing
one effect did not occur reduced the probability of the other effect even when people
knew that the common cause hadn’t occurred. This happened using both rating and
choice tasks. Walsh and Sloman (in press) obtained parallel results using different
materials and a different judgment task. Walsh and Sloman argue that the violations
are due to the nature of the explanations that people generate for whatever facts are
presented. Rehder and Burnett (2005) found small violations of screening-off when
they asked people to make inductions about the properties of category members.

People are known to make other systematic causal reasoning errors. The simplest
illustration is that people tend to believe that a cause provides more evidence for an
effect than an effect does for a cause. For example, people estimated that the condi-
tional probability that a girl has blue eyes given that her mother has blue eyes is higher
than that a mother has blue eyes, given that her daughter has blue eyes (Tversky &
Kahneman, 1980; Weidenfeld et al., 2005). This is rational if and only if the marginal
probability of the effect is greater than that of the cause. But this is implausible in the
example at hand. Blok and Sloman (2006) made a parallel observation in the context
of probability judgments using questions of the type illustrated above.

Another type of error that can occur is a tendency to rely too much on a single
causal model thereby neglecting alternatives. This tendency has been observed during
performance of a number of tasks like probability judgment (Dougherty et al., 1997)
and troubleshooting (Fischhoff et al., 1978). Chinn and Brewer (2001) presented peo-
ple with an article reporting a theory of a scientific phenomenon. The arguments in
favor of the theories were either weak or strong in terms of the amount of evidence
and credibility of the sources. Next, participants were shown an article from propo-
nents of the other theory. Articles read first proved to be more convincing regardless
of the strength of the argument. The common explanation for all these phenomena is
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that people make inferences from the causal model that they find most plausible at
the moment of judgment rather than moderating their inferences by taking other rea-
sonable causal possibilities into account.

The logic of causal intervention is also violated by some instances of self-deception.
Quattrone and Tversky (1994) asked a group of students to hold their arms in very
cold water for as long as they could. Half of the group was told that people can toler-
ate cold water for longer if they have a healthy type of heart, while the other half was
told that the healthy heart causes decreased tolerance. The first group lasted longer
than the second. This kind of behavior is not consistent with causal logic because
changing tolerance for cold would not change the type of heart one has and all partic-
ipants must have known this. In fact, the result was obtained even for those who
denied that their behavior was affected by their knowledge of the hypothesis. Their
claim that they were not affected by the hypothesis (p) along with the demonstrable
fact that they were affected by it (not p) satisfies the usual definition of self-deception
(Sackeim & Gur, 1978; Sahdra & Thagard, 2003; Talbott, 1995). Bodner and Prelec
(2002) ascribe cases of self-deception to self-signaling. People violate the logic of cau-
sation in order to signal information about themselves to others and also to them-
selves. Quattrone and Tversky’s (1984) participants aimed to signal to themselves that
they possessed a good heart.

Other violations can result in tangible loss. Many people co-operate in a one-shot
prisoner’s dilemma game (e.g., Morris et al., 1998; Shafir & Tversky, 1992). Co-operation
is inconsistent with a desire to maximize the utility of causal consequences (Nozick,
1995) because whatever the opponent does, a player does better by not co-operating.
In a related vein, many people choose one box when put in a Newcomb’s Paradox 
situation even when choosing two boxes is the dominant option (i.e., it is better
regardless of the state of the game). Whatever people are doing in these situations,
they are not correctly determining the joint effects of their actions and the environ-
ment and choosing so as to maximize their benefits.

There are many plausible explanations why people violate causal logic in these
cases. Here we focus on their justification, not their explanation. Talbott (1995)
argues that even a coherent, rational agent will sometimes benefit by self-deception.
Rational agents have an interest not only in obtaining favorable outcomes, but also in
believing certain facts about the world whether they are true or not. For example, we
all have an interest in believing that our parents love us. As long as we’re not so duped
that we fail to foresee some horrible event, like abuse or abandonment, we benefit by
believing that we are important enough to deserve love whether or not it is true.
Similarly, the belief that there is hope in our future is of value whether true or not.
Talbott proves that under a set of reasonable assumptions about belief and its utility
and about gathering evidence for belief, a Bayesian utility maximizer should act to
maintain desirable beliefs rather than to remain unbiased, as long as the desirable
beliefs do not have sufficiently bad consequences.

Mild to moderate self-deception has psychologically positive consequences (see
Taylor & Brown, 1986, 1994). People have inflated views about their traits (Brown,
1986) and abilities (Campbell, 1986; Dunning et al., 2004, provide a review). Those
positive self-illusions elevate people’s mood, their well-being, and their self-esteem
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(Taylor & Brown, 1988, 1994). Moreover, self-serving signaling of capabilities
strengthens people’s belief in personal control (Bandura, 1977). Mild to moderate
forms of self-deception can increase mental health. This helps to explain the volumi-
nous evidence for motivated reasoning (e.g., Blanton & Gerrard, 1997; Kunda, 1990)
and memory (Erdelyi, 1996). This kind of reasoning neglects causal beliefs for the
sake of a desired conclusion having positive emotional consequences.

Implications for the rationality of causal reasoning
In summary, causal reasoning proves to be well described by rational principles in
some respects. People also seem to understand the difference between observation
and intervention. People are highly sensitive to causal structure, adjusting their infer-
ences appropriately in the face of enabling and disabling conditions and appropriately
screening-off variables when the mediating variable is fixed in a chain structure. But
people also make systematic errors. They do not always screen-off when they should
such as when a common cause is fixed. They are more willing to make causal infer-
ences than diagnostic ones along the same causal path and people tend to rely too
much on a single causal model. Finally, people can act in ways that violate their own
causal beliefs such as in cases of self-deception, co-operation in two-player games,
and certain self-serving biases in reasoning and decision making.

Our conclusion is that people indeed have the tools for effective causal reasoning,
but clearly there is room for improvement. We have to remind ourselves to consider
alternative possibilities and to consider with deliberation whether evidence really sup-
ports our conclusion and to what extent.

Self-deception and other acts of self-signaling are clearly errors of causal reasoning
and yet they have a justification stemming from goals broader than the narrow goal of
getting a particular answer correct. Indeed, we have seen that they can be justified in a
Bayesian framework by considering their relative utility. But whatever process 
supports these acts also supports acts that have no justification. If one’s goal is to
maximize income, then co-operating on a single-shot Prisoner’s Dilemma makes no
sense nor does choosing one box in a Newcomb’s Paradox (see Nozick, 1995, for
explanation) once backwards-causality is ruled out (see Shafir & Tversky, 1992, for
such a case). Not all acts of signaling can be justified even if some have psychological
benefits.

Learning

Evidence for rationality
The debate about the rationality of inference in the context of causal learning has
focused on how people learn causal relations based on contingency information. The
typical experiment presents a participant with frequency data about the covariation
of a putative cause (e.g., a drug) and an effect (e.g., curing a disease) either in trial-by-trial
or tabular form. These data can be viewed in terms of a two-by-two table, based on
the presence or absence of the cause and effect. This literature has shown that people
tend to differentially weight the cells when making inferences. They pay most atten-
tion to the data in which both the cause and effect are present and the least attention
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to the data in which both are absent. This has been taken as evidence for the non-
rationality of human contingency judgments on the assumption that all cells should
have equal weight in determining whether or not there is a causal relation.

Anderson (1990) however has argued that a normative causal inference from con-
tingency data should differentially weight the cells and should do so in precisely the
way that people do. He proposes a Bayesian model of contingency learning in which
the likelihood of the data under a target causal model is compared to the likelihood of
the data under an alternative model. The target causal model posits some probability
of the effect in the presence of the cause and some probability of the effect in the
absence of the cause. The alternative model posits that the effect occurs with some
base probability that is independent of the proposed cause. According to the Bayesian
learning model, the amount of evidence that each of the cells provides for one or the
other causal model is a function of these three probabilities and reflects how well the
data in the cell distinguishes the two models. It turns out that the cause present/effect
present cell is the most diagnostic as long as the probability of the effect in the
absence of the cause in the target model is close to the base probability in the alterna-
tive model. To see why, consider an example: Suppose I want to determine whether
eating a particular salad dressing causes me to have an upset stomach. I might assume
that if the salad dressing is the culprit, most of the time that I eat it I will feel unwell.
Presumably I am unlikely to have an upset stomach whether the salad dressing does
make me ill but I don’t eat it or if the salad dressing is not the cause of my illness.
Under these conditions, eating the salad dressing and getting sick provides strong evi-
dence for the causal model in which the salad dressing is a cause of illness because
under the alternative model, such an outcome is unlikely. Conversely, not eating the
salad dressing and feeling fine provides little evidence to discriminate the models.
Under both models such an outcome is likely. Thus the differential cell weighting can
be interpreted as evidence that people’s causal inferences from contingency data are
informed by a rational inference rule that gives greatest weight to data that are
informative given the task. The key assumption is that the task is not one of determin-
ing the raw probability of a causal relation, but of comparing two causal models.

The developmental literature also reveals some support for a causal learning mech-
anism that is guided by normative principles. Between the ages of three and four, chil-
dren begin to make causal inferences that are consistent with a Bayesian prescription.
For instance, 4-year-olds are sensitive to backwards blocking and explaining away
relations. Sobel et al. (2004) performed a series of ‘blicket detector’ experiments with
three and four year olds in which children observed certain objects or combinations
of objects activating a machine (the ‘blicket detector’) and were asked to infer whether
a particular object would do so (i.e., whether it was a ‘blicket’). In the explaining-away
condition, 2 objects, A and B, activated the machine together. In a subsequent trial,
A failed to activate the machine alone. Participants were asked to infer the identity of B.
As A alone did not elicit the effect, participants should have inferred a causal relation
between B and the detector. In the backwards blocking condition, A and B again acti-
vated the detector together but this time A also activated the machine alone. Because a
causal relation between A and the detector provided an explanation for the effect in
the first trial, participants should have been less likely to infer a causal relation
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between B and the detector than in the explaining away condition. Indeed, 4-year-olds
were likely to assert a causal relation between B and the detector in the explaining-
away condition, but not in the backwards-blocking condition. In another experiment
it was shown that four year olds’ inferences in the backwards-blocking condition can
be modulated by varying the base-rate of objects that are ‘blickets’, again consistent
with rational norms. These findings demonstrate some rationality in causal learning
in young children.

Evidence against rationality
Not all aspects of causal learning have a rational justification. Even within the contin-
gency learning paradigm there is some counter-evidence in the way that participants
respond to sample size. As the number of observations increases, differences in the
probability of an effect in the presence and absence of a putative cause increase sup-
port for a causal relation because these differences are proportionately less likely to be
due to chance. However, Anderson and Sheu (1997) found that participants were not
sensitive to sample size when inferring causal relations from contingency data.

Moreover, when more complex causal learning tasks have been investigated, further
problems arise for a rational account. In both the contingency learning and blicket
detector paradigms the experimental task is relatively simple. In contingency learn-
ing, the structure of causal relations is evident. There is one putative cause and one
effect and the task is to determine whether there is a causal relation from the former
to the latter. Likewise, experiments in the developmental literature typically define the
putative causes (e.g., actions on objects) and effects (e.g., responses by a detector).
Causal relations are often deterministic and experiments consist of very few trials.
Under these conditions people perform quite well. However, real world causal learn-
ing often has many potential variables and no a priori structure.

Some recent work has examined more complex causal learning paradigms. Lagnado
and Sloman (2004) had participants observe data from a three-variable causal model
and asked them to infer the causal structure responsible for generating the data. In
one of the cover stories the causal structure represented a chemical process for pro-
duction of a perfume and the causal variables were the presence of an acid, the pres-
ence of an ester and the ultimate creation of the perfume. On a given trial a participant
might observe that the acid and ester were present and the perfume was created. On a
subsequent trial he or she might observe that the acid was present, the ester was
absent and the perfume was not created, and so on. Steyvers et al. (2003) used a similar
paradigm in which the causal structure was represented by the mind-reading capabil-
ities of aliens. In contrast to contingency learning, experiments of this type necessitate
consideration of many more possible causal relations and frequency information 
cannot be summarized in a two-by-two table. The results of these experiments are

striking in the degree of sub-optimality they reveal. Given just observation data, peo-
ple rarely infer the model actually generating the data. When allowed to make inter-
ventions, performance improves, but still surprisingly few people are able to
reconstruct the model that produced the data.

One of the reasons for people’s difficulty may be that these experiments provide few
cues to causal structure beyond covariation and there is little evidence that people are
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capable of tracking the statistics of the data presented during these tasks (Lagnado 
et al., in press). The contingency learning literature shows that given access to the nec-
essary data, some participants can make inferences in line with normative models, but
in causal structure learning experiments limitations in tracking covariation online
may lead participants to rely on other sources of information to make inferences.

One important cue to causal structure is temporal contiguity. Events that happen
close in time are often causally related, and the direction of the relation is informed by
their temporal order (effects never precede their causes). Lagnado and Sloman (2006)
have shown that people easily learn causal structure from temporal cues and that
temporal cues often trump covariation as a source of information for causal learning.
In one experiment, participants observed virus propagation among computers in a
network. On a given trial, each computer was either infected or clean, and after
observing many trials the participant was asked to identify the pathway that viruses
were being transmitted along. Covariation data was consistent with a particular causal
structure but the temporal order was manipulated to favor a different structure. (i.e.,
participants were told that a virus could be transmitted from one computer to
another, but show up in the second computer before the first). The only way to
recover the true structure was to ignore the temporal information and use covaria-
tion. Even though participants were told that the temporal information was uninfor-
mative they still tended to make inferences consistent with it and inconsistent with
the covariation data. White (2006) also found that participants tend to rely on tempo-
ral information rather than covariation when making causal inferences. Hagmayer
and Waldmann (2002) and Buehner and May (2002) have shown that people can
adjust their inferences to the expected time scale of events. This provides further evi-
dence that people are highly sensitive to temporal information.

Another important source of information is background knowledge that constrains
the set of plausible causal structures. For example, if my washing machine started
making horrid noises I might reason that a broken part was responsible, and infer that
replacing the part might fix the problem. I would be unlikely to make the same infer-
ence if my child were making horrid noises. One of the main findings of research in
the scientific reasoning paradigm is that children and adults’ theoretical beliefs about
causal structure bias the way that new information is interpreted (Kuhn & Dean,
2004). In scientific reasoning experiments a participant is given covariation data for
several putative causes and an effect and must infer the actual causes. Participants
tend to rely on their beliefs about the mechanisms responsible for the causal relation
rather than the covariation information when making inferences. For example, par-
ticipants asked to identify the causes of the success of a children’s show sometimes
choose humor even if such an inference is not supported by the data.

A key difference between cues such as temporal order and background knowledge
on one hand and covariation on the other is that the former are available on individual
trials whereas covariation is based on integrating over multiple trials. Tracking covaria-
tion is often difficult and therefore other sources of information are used. Much of
causal learning may use simplifying heuristics that are sensitive to trial-to-trial cues
(Fernbach, 2006; Lagnado et al., 2007). Under many conditions, these heuristics
approximate normative inferences but they can also result in systematic errors.
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Fernbach (2006) offers evidence that trial-to-trial cues are used to learn causal
structure. Participants observed interventions on a three-variable causal system com-
posed of binary slider bars and had to infer the causal model generating the data. For
each causal model, participants observed five interventions, and prior to each one the
intervened-on slider bar was identified. Thus the intervention provided a trial-to-trial
cue. The participant knew that the intervened-on slider bar moved first and that if
any other slider bar moved it was a direct or indirect effect. The majority of partici-
pants’ responses can be explained by a simple heuristic that asserts a direct causal rela-
tion between the intervened-on variable and any other variables that were activated
during that intervention. One characteristic result was that when the generative
model was a chain (e.g., slider A causes slider B and slider B cause slider C) few partic-
ipants ever inferred chains. Instead they tended to infer confound models, three-link
models that include links from the root variable to both of the other variables and a
link from the second variable in the chain to the third (e.g., A causes B, A causes C,
and B causes C). Use of a heuristic based on the interventional cue offers a simple
account of this result. In the case of an A causes B causes C chain, a participant will
rarely get evidence for A to B and B to C links without simultaneous evidence for an 
A to C link because A and B will rarely both be active in the absence of C. Participants
were thus unaware that the link from the second variable to the third was unnecessary
to explain the data and systematically inferred extraneous links.

Several counter-normative phenomena of human cognition may be due to the 
sub-optimality of simplifying heuristics used for causal learning. For instance, both
animals (Skinner, 1947) and people (Ono, 1987) have been shown to infer a causal
relation between unrelated events based on few or even a single observation of
temporally contiguous events. This type of learning may be the source of supersti-
tious behavior. Another example mentioned above is that people tend to be biased in
interpreting evidence to accord with pre-existing beliefs about causal mechanism.
Such biases may stem from the relative ease of accessing and using background
knowledge as opposed to covariation data.

Implications for the rationality of causal learning
In summary, people learn causal relations in a way that is consistent with some rational
principles from the age of 4 or younger. In contingency learning, people may differen-
tially weight types of evidence in a way that allows the diagnosis of competing models.
Likewise, 4-year-olds are sensitive to rational principles such as explaining away and
to base rates. But even in these relatively simple tasks there is evidence of systematic
bias, such as sample size neglect. When the task is more complex, people are incapable
of tracking covariation and using it to make effective statistical inferences about
causal relations. Thus it is unlikely that the dominant mechanism for real world
causal learning is anything like a system that tracks the covariation of events and per-
forms a statistical inference over the data. Rational models of the type proposed by
Anderson (1990), Tenenbaum and Griffiths (2001b), and Gopnik et al. (2004) are
probably not accurate as comprehensive accounts of causal learning.

Rather, causal learning is often based on heuristics sensitive to cues other than
covariation such as temporal information, background knowledge, and interventions.

ARE CAUSAL REASONING AND LEARNING RATIONAL? 493

21-Charter&Oaksford-Chap21  11/5/07  11:04 AM  Page 493



This is similar in spirit to Anderson and Sheu’s (1995) claim that ‘subjects look for
quantities that are easy to compute and which are causally relevant and make their
judgments with respect to these’ (p. 39) and Kuhn and Dean’s (2004) claim that the
strategies people use to solve causal inference problems vary within and across indi-
viduals depending on the nature of the task. Though these heuristics are generally
effective they do lead to systematic biases.

Conclusion
A number of important models of reasoning and learning have come out of the tradi-
tion that associates itself with rational analysis (e.g., Oaksford & Chater, 1994;
Steyvers et al., 2003). The models are computational in the sense that they hypothe-
size a functional relation that people are trying to accomplish. But the models are
descriptive, not normative. The models include assumptions chosen to fit data, not
only to satisfy task constraints or resource limitations, and in that sense have no claim
to rationality. Rational frameworks offer a rich menu of mathematical tools that
should be made use of by theorists, but if the model includes assumptions chosen to
fit the data, the model no longer has a rational basis.

Some theorists argue that a framework that supports coherent reasoning has a kind
of rationality even if it includes false beliefs. But reasoning logically about false state-
ments does not lead to truth. Analogously, reasoning coherently about false beliefs is
not a form of rationality. It might be rational to run away from a tiger, but running
away from a bunny rabbit is not rational even if you believe the rabbit is a tiger.

We reiterate that our goal is not to damn the descriptive value of the kind of models
that have been and will be developed in the rational analysis tradition. In fact, we sus-
pect that models of reasoning and learning will always require some notion of maxi-
mizing performance to account for human flexibility and adaptiveness. This is obvious
when modeling thinking in the real world. People learn (eventually) to fix their bicy-
cles effectively. But this kind of display of everyday rationality does not entail that nor-
mative models serve as a prototype for descriptive models. It merely tells us that
descriptive models require a quality control or error-reduction mechanism. Normative
models may inspire hypotheses about what those mechanisms might look like, but the
normative and descriptive models remain distinct entities and we should identify them
that way in order to maintain coherence and clarity in our theorizing.

Our reviews of causal reasoning and learning have revealed some of the reasons
that rational models have had limited descriptive power; others are reviewed by
Danks (this volume). Although causal reasoning can be highly effective and demon-
strates exquisite sensitivity to causal considerations, it shows some definite deficien-
cies. In order to solve a huge variety of complex and subtle problems, it has developed
strategies that lead to systematic bias. Similarly, causal learning can pick up on a vari-
ety of trenchant cues to figure out the causal structures that relate events. Yet it fails to
pick up on some of the most valuable information, like covariational data, and it
often guesses using a smorgasbord of strategies. Treating people as rational may not
be irrational but it is a mistake; it fails to identify some of the aspects of cognition that
are uniquely human.
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