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Abstract: The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in
specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive
behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and
representations. We note commonalities between this rational approach and other movements in psychology – namely, Behaviorism
and evolutionary psychology – that set aside mechanistic explanations or make use of optimality assumptions. Through these
comparisons, we identify a number of challenges that limit the rational program’s potential contribution to psychological theory.
Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of
process-level data and because their assumptions about the environment are generally not grounded in empirical measurement.
The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong
assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without
a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the
same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the
expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to
offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the
representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this
unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls that have plagued previous
theoretical movements.
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1. Introduction

Advances in science are due not only to empirical discov-
eries and theoretical progress, but also to development of
new formal frameworks. Innovations in mathematics or
related fields can lead to a new class of models
that enables researchers to articulate more sophisticated
theories and to address more complex empirical problems
than previously possible. This often leads to a rush of new
research and a general excitement in the field.

For example in physics, the development of tensor cal-
culus on differential manifolds (Ricci & Levi-Civita 1900)
provided the mathematical foundation for formalizing the
general theory of relativity (Einstein 1916). This formalism
led to quantitative predictions that enabled experimental
verification of the theory (e.g., Dyson et al. 1920). More
recent mathematical advances have played key roles in
the development of string theory (a potential unification
of general relativity and quantum mechanics), but in this
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case the mathematical framework, although elegant, has
yet to make new testable predictions (Smolin 2006; Woit
2006). Therefore, it is difficult to evaluate whether string
theory represents true theoretical progress.

In the behavioral sciences, we are generally in the more
fortunate position of being able to conduct the key exper-
iments. However, there is still a danger of confusing tech-
nical advances with theoretical progress, and the allure of
the former can lead to the neglect of the latter. As the new
framework develops, it is critical to keep the research tied
to certain basic questions, such as: What theoretical issues
are at stake? What are the core assumptions of the
approach? What general predictions does it make? What
is being explained and what is the explanation? How do
the explanations it provides relate, logically, to those of
existing approaches? What is the domain of inquiry, and
what questions are outside its scope? This grounding is
necessary for disciplined growth of the field. Otherwise,
there is a tendency to focus primarily on generating exist-
ence proofs of what the computational framework can
achieve. This comes at the expense of real theoretical pro-
gress, in terms of deciding among competing explanations
for empirical phenomena or relating those explanations to
existing proposals. By overemphasizing computational
power, we run the risk of producing a poorly grounded
body of work that is prone to collapse under more
careful scrutiny.

This article explores these issues in connection with
Bayesian modeling of cognition. Bayesian methods have
progressed tremendously in recent years, due largely to
mathematical advances in probability and estimation
theory (Chater et al. 2006). These advances have
enabled theorists to express and derive predictions from
far more sophisticated models than previously possible.
These models have generated excitement for at least
three reasons: First, they offer a new interpretation of
the goals of cognitive systems, in terms of inductive prob-
abilistic inference, which has revived attempts at rational
explanation of human behavior (Oaksford & Chater
2007). Second, this rational framing can make the assump-
tions of Bayesian models more transparent than in
mechanistically oriented models. Third, Bayesian models
may have the potential to explain some of the most
complex aspects of human cognition, such as language
acquisition or reasoning under uncertainty, where struc-
tured information and incomplete knowledge combine in
a way that has defied previous approaches (e.g., Kemp &
Tenenbaum 2008).

Despite this promise, there is a danger that much of the
research within the Bayesian program is getting ahead of
itself, by placing too much emphasis on mathematical
and computational power at the expense of theoretical
development. In particular, the primary goal of much
Bayesian cognitive modeling has been to demonstrate
that human behavior in some task is rational with
respect to a particular choice of Bayesian model. We
refer to this school of thought as Bayesian Fundamental-
ism, because it strictly adheres to the tenet that human be-
havior can be explained through rational analysis – once
the correct probabilistic interpretation of the task environ-
ment has been identified – without recourse to process,
representation, resource limitations, or physiological or
developmental data. Although a strong case has been
made that probabilistic inference is the appropriate

framework for normative accounts of cognition (Oaksford
& Chater 2007), the fundamentalist approach primarily
aims to reinforce this position, without moving on to
more substantive theoretical development or integration
with other branches of cognitive science.

We see two significant disadvantages to the fundamen-
talist approach. First, the restriction to computational-
level accounts (cf. Marr 1982) severely limits contact
with process-level theory and data. Rational approaches
attempt to explain why cognition produces the patterns
of behavior that is does, but they offer no insight into
how cognition is carried out. Our argument is not merely
that rational theories are limited in what they can
explain (this applies to all modes of explanation), but
that a complete theory of cognition must consider both
rational and mechanistic explanations as well as their inter-
dependencies, rather than treating them as competitors.
Second, the focus on existence proofs obfuscates the fact
that there are generally multiple rational theories of any
given task, corresponding to different assumptions about
the environment and the learner’s goals. Consequently,
there is insufficient acknowledgement of these assump-
tions and their critical roles in determining model predic-
tions. It is extremely rare to find a comparison among
alternative Bayesian models of the same task to determine
which is most consistent with empirical data (see Fitelson
[1999] for a related analysis of the philosophical litera-
ture). Likewise, there is little recognition when the critical
assumptions of a Bayesian model logically overlap closely
with those of other theories, so that the Bayesian model is
expressing essentially the same explanation, just couched
in a different framework.

The primary aim of this article is to contrast Bayesian
Fundamentalism with other Bayesian research that expli-
citly compares competing rational accounts and that
considers seriously the interplay between rational and
mechanistic levels of explanation. We call this the Enligh-
tened Bayesian approach, because it goes beyond the
dogma of pure rational analysis and actively attempts to
integrate with other avenues of inquiry in cognitive
science. A critical distinction between Bayesian Funda-
mentalism and Bayesian Enlightenment is that the latter
considers the elements of a Bayesian model as claims
regarding psychological process and representation,
rather than mathematical conveniences made by the
modeler for the purpose of deriving computational-level
predictions. Bayesian Enlightenment thus treats Bayesian
models as making both rational and mechanistic commit-
ments, and it takes as a goal the joint evaluation of both.
Our aim is to initiate a discussion of the distinctions and
relative merits of Bayesian Fundamentalism and Bayesian
Enlightenment, so that future research can focus effort in
the directions most likely to lead to real theoretical
progress.

Before commencing, we must distinguish a third usage
of Bayesian methods in the cognitive and other sciences,
which we refer to as Agnostic Bayes. Agnostic Bayesian
research is concerned with inferential methods for decid-
ing among scientific models based on empirical data (e.g.,
Pitt et al. 2002; Schwarz 1978). This line of research has
developed powerful tools for data analysis, but, as with
other such tools (e.g., analysis of variance, factor analysis),
they are not intended as models of cognition itself.
Because it has no position on whether the Bayesian
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framework is useful for describing cognition, Agnostic
Bayes is not a topic of the present article. Likewise,
research in pure Artificial Intelligence that uses Bayesian
methods without regard for potential correspondence
with biological systems is beyond the scope of this
article. There is no question that the Bayesian framework,
as a formal system, is a powerful scientific tool. The ques-
tion is how well that framework parallels the workings of
human cognition, and how best to exploit those parallels
to advance cognitive science.

The rest of this article offers what we believe is an
overdue assessment of the Bayesian approach to cognitive
science, including evaluation of its theoretical content,
explanatory status, scope of inquiry, and relationship to
other methods. We begin with a discussion of the role
that new metaphors play in science, and cognitive
science in particular, using connectionism as an historical
example to illustrate both the potential and the danger of
rapid technical advances within a theoretical framework.
An overview of Bayesian modeling of cognition is then pre-
sented, that attempts to clarify what is and is not part of a
Bayesian psychological theory. Following this, we offer a
critical appraisal of the Fundamentalist Bayesian move-
ment. We focus on concerns arising from the limitation
to strictly computational-level accounts, by noting com-
monalities between the Bayesian program and other
movements, namely Behaviorism and evolutionary psy-
chology, that have minimized reliance on mechanistic
explanations in favor of explaining behavior directly from
the environment. Finally, we outline the Enlightened
Bayesian perspective, give examples of research in this
line, and explain how this approach leads to a more pro-
ductive use of the Bayesian framework and better inte-
gration with other methods in cognitive science. Like
many others, we believe that Bayes’ mathematical formal-
ism has great potential to aid our understanding of cogni-
tion. Our aim is not to undermine that potential, but to
focus it by directing attention to the important questions
that will allow disciplined, principled growth and inte-
gration with existing knowledge. Above all, our hope is
that by the time the excitement has faded over their new-
found expressive power, Bayesian theories will be seen to
have something important to say.

2. Metaphor in science

Throughout the history of science, metaphor and analogy
use has helped researchers gain insight into difficult pro-
blems and make theoretical progress (Gentner et al.
1997; Nersessian 1986; Thagard 1989). In addition to
this evidence gleaned from the personal journals of promi-
nent scientists, direct field observation of modern molecu-
lar biologists finds that analogies are commonly used in
laboratory discussions (Dunbar 1995). Metaphors and
analogies provide powerful means for structuring an
abstract or poorly understood domain in terms of a more
familiar domain, such as understanding the atom in
terms of the solar system (Gentner 1983). Drawing these
parallels can lead to insights and be a source of new
ideas and hypotheses.

Daugman (2001) reviews the historical usage of meta-
phor for describing brain function and concludes that
current technology has consistently determined the

dominant choice of metaphor, from water technology to
clocks to engines to computers. Whatever society at
large views as its most powerful device tends to become
our means for thinking about the brain, even in formal
scientific settings. Despite the recurring tendency to take
the current metaphor literally, it is important to recognize
that any metaphor will eventually be supplanted. Thus,
researchers should be aware of what the current metaphor
contributes to their theories, as well as what the theories’
logical content is once the metaphor is stripped away.

One danger is mistaking metaphors for theories in
themselves. In such cases, scientific debate shifts focus
from comparisons of theories within established frame-
works to comparisons among metaphors. Such debates
are certainly useful in guiding future research efforts,
but it must be recognized that questions of metaphor are
not scientific questions (at best, they are meta-scientific).
Metaphors should be viewed as tools or languages, not
theories in themselves. Conflating debates over scientific
metaphors with scientific debates per se can impede
theoretical progress in a number of ways. By shifting
focus to the level of competing metaphors, the logical
content of specific theories can become neglected.
Research that emphasizes existence proofs, demonstrating
that a given set of phenomena can be explained within a
given framework, tends to ignore critical comparisons
among multiple, competing explanations. Likewise, the
emphasis on differences in metaphorical frameworks can
obscure the fact that theories cast within different frame-
works can have substantial logical overlap. In both ways,
basic theory loses out, because too much effort is spent
debating the best way to analyze or understand the scien-
tific subject, at the expense of actually doing the analysis.
Only by identifying competing explanations, and distilling
their differences to logical differences in assumptions and
empirically testable contrasting predictions, can true
theoretical progress be made.

2.1. The case of connectionism

One illustration of this process within cognitive science
comes from the history of connectionism. Connectionism
was originally founded on a metaphor with telegraph net-
works (Daugman 2001) and later on a metaphor between
information-processing units and physical neurons (in
reaction to the dominant computer metaphor of the
1970s and 1980s). At multiple points in its development,
research in connectionism has been marked by technical
breakthroughs that significantly advanced the compu-
tational and representational power of existing models.
These breakthroughs led to excitement that connectionism
was the best framework within which to understand the
brain. However, the initial rushes of research that followed
focused primarily on demonstrations of what could be
accomplished within this framework, with little attention
to the theoretical commitments behind the models or
whether their operation captured something fundamental
to human or animal cognition. Consequently, when chal-
lenges arose to connectionism’s computational power,
the field suffered major setbacks, because there was insuf-
ficient theoretical or empirical grounding to fall back on.
Only after researchers began to take connectionism
seriously as a mechanistic model, to address what it
could and could not predict, and to consider what
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constraints it placed on psychological theory, did the field
mature to the point that it was able to make a lasting con-
tribution. This shift in perspective also helped to clarify
the models’ scope, in terms of what questions they
should be expected to answer, and identified shortcomings
that in turn spurred further research.

There are of course numerous perspectives on the his-
torical and current contributions of connectionism, and
it is not the purpose of the present article to debate
these views. Instead, we merely summarize two points in
the history of connectionism that illustrate how overem-
phasis on computational power at the expense of theoreti-
cal development can delay scientific progress.

Early work on artificial neurons by McCulloch and Pitts
(1943) and synaptic learning rules by Hebb (1949) showed
how simple, neuron-like units could automatically learn
various prediction tasks. This new framework seemed
very promising as a source of explanations for autonomous,
intelligent behavior. A rush of research followed, culmi-
nated by Rosenblatt’s (1962) perceptron model, for which
he boldly claimed, “Given an elementary a-perceptron, a
stimulus world W, and any classification C(W) for which
a solution exists, . . . an error correction procedure will
always yield a solution to C(W) in finite time” (p. 111).
However, Minsky and Papert (1969) pointed out a fatal
flaw: Perceptrons are provably unable to solve problems
requiring nonlinear solutions. This straightforward yet
unanticipated critique devastated the connectionist
movement such that there was little research under that
framework for the ensuing 15 years.

Connectionism underwent a revival in the mid-1980s, pri-
marily triggered by the development of back-propagation,
a learning algorithm that could be used in multilayer
networks (Rumelhart et al. 1986). This advance dramatically
expanded the representational capacity of connectionist
models, to the point where they were capable of approximat-
ing any function to arbitrary precision, bolstering hopes that
paired with powerful learning rules any task could be learn-
able (Hornik et al. 1989). This technical advance led to a
flood of new work, as researchers sought to show that
neural networks could reproduce the gamut of psychological
phenomena, from perception to decision making to
language processing (e.g., McClelland et al. 1986; Rumel-
hart et al. 1986). Unfortunately, the bubble was to burst
once again, following a series of attacks on connectionism’s
representational capabilities and lack of grounding. Connec-
tionist models were criticized for being incapable of captur-
ing the compositionality and productivity characteristic of
language processing and other cognitive representations
(Fodor & Pylyshyn 1988); for being too opaque (e.g., in
the distribution and dynamics of their weights) to offer
insight into their own operation, much less that of
the brain (Smolensky 1988); and for using learning
rules that are biologically implausible and amount to
little more than a generalized regression (Crick 1989).
The theoretical position underlying connectionism was
thus reduced to the vague claim that that the brain can
learn through feedback to predict its environment,
without a psychological explanation being offered of
how it does so. As before, once the excitement over
computational power was tempered, the shortage of
theoretical substance was exposed.

One reason that research in connectionism suffered
such setbacks is that, although there were undeniably

important theoretical contributions made during this
time, overall there was insufficient critical evaluation of
the nature and validity of the psychological claims under-
lying the approach. During the initial explosions of con-
nectionist research, not enough effort was spent asking
what it would mean for the brain to be fundamentally gov-
erned by distributed representations and tuning of associ-
ation strengths, or which possible specific assumptions
within this framework were most consistent with the
data. Consequently, when the limitations of the metaphor
were brought to light, the field was not prepared with an
adequate answer. On the other hand, pointing out the
shortcomings of the approach (e.g., Marcus 1998; Pinker
& Prince 1988) was productive in the long run, because
it focused research on the hard problems. Over the last
two decades, attempts to answer these criticisms have
led to numerous innovative approaches to computational
problems such as object binding (Hummel & Biederman
1992), structured representation (Pollack 1990), recurrent
dynamics (Elman 1990), and executive control (e.g., Miller
& Cohen 2001; Rougier et al. 2005). At the same time,
integration with knowledge of anatomy and physiology
has led to much more biologically realistic networks
capable of predicting neurological, pharmacological, and
lesion data (e.g., Boucher et al. 2007; Frank et al. 2004).
As a result, connectionist modeling of cognition has a
much firmer grounding than before.

2.2. Lessons for the Bayesian program?

This brief historical review serves to illustrate the
dangers that can arise when a new line of research is
driven primarily by technical advances and is not sub-
jected to the same theoretical scrutiny as more mature
approaches. We believe such a danger currently exists
in regard to Bayesian models of cognition. Principles
of probabilistic inference have been prevalent in
cognitive science at least since the advent of signal detec-
tion theory (Green & Swets 1966). However, Bayesian
models have become much more sophisticated in
recent years, largely because of mathematical advances
in specifying hierarchical and structured probability dis-
tributions (e.g., Engelfriet & Rozenberg 1997; Griffiths
& Ghahramani 2006) and in efficient algorithms for
approximate inference over complex hypothesis spaces
(e.g., Doucet et al. 2000; Hastings 1970). Some of the
ideas developed by psychologists have been sufficiently
sophisticated that they have fed back to significantly
impact computer science and machine learning (e.g.,
Thibaux & Jordan 2007). In psychology, these technical
developments have enabled application of the Bayesian
approach to a wide range of complex cognitive tasks,
including language processing and acquisition (Chater
& Manning 2006), word learning (Xu & Tenenbaum
2007b), concept learning (Anderson 1991b), causal
inference (Griffiths & Tenenbaum 2009), and deductive
reasoning (Chater & Oaksford 1999). There is a growing
belief in the field that the Bayesian framework has the
potential to solve many of our most important open ques-
tions, as evidenced by the rapid increase in the number
of articles published on Bayesian models, and by opti-
mistic assessments such as this one made by Chater
and Oaksford: “In the [last] decade, probabilistic
models have flourished . . . [The current wave of
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researchers] have considerably extended both the tech-
nical possibilities of probabilistic models and their
range of applications in cognitive science” (Chater &
Oaksford 2008, p. 25).

One attraction of the Bayesian framework is that it is
part of a larger class of models that make inferences in
terms of probabilities. Like connectionist models, prob-
abilistic models avoid many of the challenges of symbolic
models founded on Boolean logic and classical artificial
intelligence (e.g., Newell & Simon 1972). For example,
probabilistic models offer a natural account of non-
monotonic reasoning, avoiding the technical challenges
that arise in the development of non-monotonic logics
(see Gabbay et al. 1994). Oaksford and Chater (2007)
make a strong case that probabilistic models have
greater computational power than propositional models,
and that the Bayesian framework is the more appropriate
standard for normative analysis of human behavior than is
that of classical logic (but see Binmore [2009] for an
important counterargument). Unfortunately, most of the
literature on Bayesian modeling of cognition has not
moved past these general observations. Much current
research falls into what we have labeled Bayesian Funda-
mentalism, which emphasizes promotion of the Bayesian
metaphor over tackling genuine theoretical questions. As
with early incarnations of connectionism, the Bayesian
Fundamentalist movement is primarily driven by
the expressive power – both computational and represen-
tational – of its mathematical framework. Most appli-
cations to date have been existence proofs, in that they
demonstrate a Bayesian account is possible without
attempting to adjudicate among (or even acknowledge)
the multiple Bayesian models that are generally possible,
or to translate the models into psychological assumptions
that can be compared with existing approaches. Further-
more, amidst the proliferation of Bayesian models for
various psychological phenomena, there has been surpris-
ingly little critical examination of the theoretical tenets of
the Bayesian program as a whole.

Taken as a psychological theory, the Bayesian frame-
work does not have much to say. Its most unambiguous
claim is that much of human behavior can be explained
by appeal to what is rational or optimal. This is an old
idea that has been debated for centuries (e.g., Kant
1787/1961). More importantly, rational explanations for
behavior offer no guidance as to how that behavior is
accomplished. As already mentioned, early connectionist
learning rules were subject to the same criticism, but con-
nectionism is naturally suited for grounding in physical
brain mechanisms. The Bayesian framework is more
radical in that, unlike previous brain metaphors grounded
in technology and machines, the Bayesian metaphor is tied
to a mathematical ideal and thus eschews mechanism
altogether. This makes Bayesian models more difficult to
evaluate. By locating explanations firmly at the compu-
tational level, the Bayesian Fundamentalist program
renders irrelevant many major modes of scientific
inquiry, including physiology, neuroimaging, reaction
time, heuristics and biases, and much of cognitive develop-
ment (although, as we show in section 6, this is not a
necessary consequence of the Bayesian framework
itself). All of these considerations suggest it is critical to
pin Bayes down, to bring the Bayesian movement past
the demonstration phase and get to the real work of

using Bayesian models, in integration with other
approaches, to understand the detailed workings of the
mind and brain.

3. Bayesian inference as a psychological model

Bayesian modeling can seem complex to the outsider. The
basic claims of Bayesian modeling can be completely
opaque to the non-mathematically inclined. In reality,
the presuppositions of Bayesian modeling are fairly
simple. In fact, one might wonder what all the excitement
is about once the mystery is removed. Here, by way of toy
example, we shed light on the basic components at the
heart of every Bayesian model. The hope is that this illus-
tration will make clear the basic claims of the Bayesian
program.

Constructing a Bayesian model involves two steps. The
first step is to specify the set of possibilities for the state of
the world, which is referred to as the hypothesis space.
Each hypothesis can be thought of as a candidate predic-
tion by the subject about what future sensory information
will be encountered. However, the term hypothesis should
not be confused with its more traditional usage in psychol-
ogy, connoting explicit testing of rules or other
symbolically represented propositions. In the context of
Bayesian modeling, hypotheses need have nothing to do
with explicit reasoning, and indeed the Bayesian frame-
work makes no commitment whatsoever on this issue.
For example, in Bayesian models of visual processing,
hypotheses can correspond to extremely low-level
information, such as the presence of elementary visual fea-
tures (contours, etc.) at various locations in the visual field
(Geisler et al. 2001). There is also no commitment regard-
ing where the hypotheses come from. Hypotheses could
represent innate biases or knowledge, or they could have
been learned previously by the individual. Thus, the
framework has no position on nativist-empiricist debates.
Furthermore, hypotheses representing very different
types of information (e.g., a contour in a particular
location, whether or not the image reminds you of your
mother, whether the image is symmetrical, whether it
spells a particular word, etc.) are all lumped together in
a common hypothesis space and treated equally by the
model. Hence, there is no distinction between different
types of representations or knowledge systems within the
brain. In general, a hypothesis is nothing more than a
probability distribution. This distribution, referred to as
the likelihood function, simply specifies how likely each
possible pattern of observations is according to the hypoth-
esis in question.

The second step in constructing a Bayesian model is to
specify how strongly the subject believes in each hypoth-
esis before observing data. This initial belief is expressed
as a probability distribution over the hypothesis space,
and is referred to as the prior distribution (or simply,
prior). The prior can be thought of as an initial bias in
favor of some hypotheses over others, in that it contributes
extra “votes” (as elaborated in the next two paragraphs)
that are independent of any actual data. This decisional
bias allows the model’s predictions to be shifted in any
direction the modeler chooses regardless of the subject’s
observations. As we discuss in section 5, the prior can be
a strong point of the model if it is derived from empirical

Jones & Love: Bayesian Fundamentalism or Enlightenment?

BEHAVIORAL AND BRAIN SCIENCES (2011) 34:4 173



statistics of real environments. However, more commonly
the prior is chosen ad hoc, providing substantial uncon-
strained flexibility to models that are advocated as rational
and assumption-free.

Together, the hypotheses and the prior fully determine
a Bayesian model. The model’s goal is to decide how
strongly to believe in each hypothesis after data have
been observed. This final belief is again expressed as a
probability distribution over the hypothesis space and is
referred to as the posterior distribution (or posterior).
The mathematical identity known as Bayes’ Rule is used
to combine the prior with the observed data to compute
the posterior. Bayes’ Rule can be expressed in many
ways, but here we explain how it can be viewed as a
simple vote-counting model. Specifically, Bayesian infer-
ence is equivalent to tracking evidence for each hypoth-
esis, or votes for how strongly to believe in each
hypothesis. The prior provides the initial evidence
counts, Eprior, which are essentially made-up votes that
give some hypotheses a head start over others before any
actual data are observed. When data are observed, each
observation adds to the existing evidence according to
how consistent it is with each hypothesis. The evidence
contributed for a hypothesis that predicted the obser-
vation will be greater than the evidence for a hypothesis
under which the observation was unlikely. The evidence
contributed by the ith observation, Edatai

, is simply
added to the existing evidence to update each hypothesis’s
count. Therefore, the final evidence, Eposterior, is nothing
more than a sum of the votes from all of the observations,
plus the initial votes from the prior:1

Eposterior(H) ¼ Eprior(H)þ
X

i

Edatai
(H) (1)

This sum is computed for every hypothesis, H, in the
hypothesis space. The vote totals determine how strongly
the model believes in each hypothesis in the end. Thus,
any Bayesian model can be viewed as summing evidence
for each hypothesis, with initial evidence coming from
the prior and additional evidence coming from each new
observation. The final evidence counts are then used in
whatever decision procedure is appropriate for the task,
such as determining the most likely hypothesis, predicting
the value of some unobserved variable (by weighting each
hypothesis by its posterior probability and averaging their
predictions), or choosing an action that maximizes the
expected value of some outcome (again by weighted
average over hypotheses). At its core, this is all there is
to Bayesian modeling.

To illustrate these two steps and how inference pro-
ceeds in a Bayesian model, consider the problem of deter-
mining whether a fan entering a football stadium is rooting
for the University of Southern California (USC) Trojans or
the University of Texas (UT) Longhorns, based on three
simple questions: (1) Do you live by the ocean? (2) Do
you own a cowboy hat? (3) Do you like Mexican food?
The first step is to specify the space of possibilities (i.e.,
hypothesis space). In this case the hypothesis space
consists of two possibilities: being a fan of either USC or
UT. Both of these hypotheses entail probabilities for the
data we could observe, for example, P(ocean j

USC) ¼ .8 and P(ocean j UT) ¼ .3. Once these probabil-
ities are given, the two hypotheses are fully specified.
The second step is to specify the prior. In many

applications, there is no principled way of doing this, but
in this example the prior corresponds to the probability
that a randomly selected person will be a USC fan or a
UT fan; that is, one’s best guess as to the overall proportion
of USC and UT fans in attendance.

With the model now specified, inference proceeds by
starting with the prior and accumulating evidence as
new data are observed. For example, if the football game
is being played in Los Angeles, one might expect that
most people are USC fans, and hence the prior would
provide an initial evidence count in favor of USC. If our
target person responded that he lives near the ocean,
this observation would add further evidence for USC rela-
tive to UT. The magnitudes of these evidence values will
depend on the specific numbers assumed for the prior
and for the likelihood function for each hypothesis; but
all that the model does is take the evidence values and
add them up. Each new observation adds to the balance
of evidence among the hypotheses, strengthening those
that predicted it relative to those under which it was
unlikely.

There are several ways in which real applications of
Bayesian modeling become more complex than the fore-
going simple example. However, these all have to do
with the complexity of the hypothesis space rather than
the Bayesian framework itself. For example, many
models have a hierarchical structure in which hypotheses
are essentially grouped into higher-level overhypotheses.
Overhypotheses are generally more abstract and require
more observations to discriminate among them; thus, hier-
archical models are useful for modeling learning (e.g.,
Kemp et al. 2007). However, each overhypothesis is just
a weighted sum of elementary hypotheses, and inference
among overhypotheses comes down to exactly the same
vote-counting scheme as described earlier. As a second
example, many models assume special mathematical func-
tions for the prior, such as conjugate priors (discussed
further in sect. 6), that simplify the computations involved
in updating evidence. However, such assumptions are
generally made solely for the convenience of the
modeler, rather than for any psychological reason related
to the likely initial beliefs of a human subject. Finally,
for models with especially complex hypothesis spaces,
computing exact predictions often becomes computation-
ally intractable. In these cases, sophisticated approxi-
mation schemes are used, such as Markov-chain Monte
Carlo (MCMC) or particle filtering (i.e., sequential
Monte Carlo). These algorithms yield good estimates of
the model’s true predictions while requiring far less com-
putational effort. However, once again they are used for
the convenience of the modeler and are not meant as pro-
posals for how human subjects might solve the same com-
putational problems. As we argue in section 6, all three of
these issues are points where Bayesian modeling makes
potential contact with psychological theory in terms of
how information is represented and processed. Unfortu-
nately, most of the focus to date has been on the Bayesian
framework itself, setting aside where the hypotheses and
priors come from and how the computations are per-
formed or approximated.

The aim of this section has been to clear up confusion
about the nature and theoretical claims of Bayesian
models. To summarize: Hypotheses are merely probability
distributions and have no necessary connection to explicit
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reasoning. The model’s predictions depend on the initial
biases on the hypotheses (i.e., the prior), but the choice
of the prior does not always have a principled basis. The
heart of Bayesian inference – combining the prior with
observed data to reach a final prediction – is formally
equivalent to a simple vote-counting scheme. Learning
and one-off decision-making both follow this scheme and
are treated identically except for the timescale and speci-
ficity of hypotheses. The elaborate mathematics that
often arises in Bayesian models comes from the complexity
of their hypothesis sets or the tricks used to derive tract-
able predictions, which generally have little to do with
the psychological claims of the researchers. Bayesian
inference itself, aside from its assumption of optimality
and close relation to vote-counting models, is surprisingly
devoid of psychological substance. It involves no represen-
tations to be updated; no encoding, storage, retrieval, or
search; no attention or control; no reasoning or complex
decision processes; and in fact no mechanism at all,
except for a simple counting rule.

4. Bayes as the new Behaviorism

Perhaps the most radical aspect of Bayesian Fundamental-
ism is its rejection of mechanism. The core assumption is
that one can predict behavior by calculating what is
optimal in any given situation. Thus, the theory is cast
entirely at the computational level (in the sense of Marr
1982), without recourse to mechanistic (i.e., algorithmic
or implementational) levels of explanation. As a meta-
scientific stance, this is a very strong position. It asserts
that a wide range of modes of inquiry and explanation
are essentially irrelevant to understanding cognition. In
this regard, the Bayesian program has much in common
with Behaviorism. This section explores the parallels
between these two schools of thought in order to draw
out some of the limitations of Bayesian Fundamentalism.

During much of the first half of the 20th century, Amer-
ican psychology was dominated by the Behaviorist belief
that one cannot draw conclusions about unobservable
mental entities (Skinner 1938; Watson 1913). Under this
philosophy, theories and experiments were limited to
examination of the schedule of sensory stimuli directly
presented to the subject and the patterns of observed
responses. This approach conferred an important degree
of rigor that the field previously lacked, by abolishing
Dualism, advocating rigorous Empiricism, and eliminating
poorly controlled and objectively unverifiable methods
such as introspection. The strict Empiricist focus also led
to discovery of important and insightful phenomena,
such as shaping (Skinner 1958) and generalization
(Guttman & Kalish 1956).

One consequence of the Behaviorist framework was that
researchers limited themselves to a very constrained set of
explanatory tools, such as conditioning and reinforcement.
These tools have had an important lasting impact, for
example, in organizational behavior management (Dickin-
son 2000) and behavioral therapy for a wide variety of psy-
chiatric disorders (Rachman 1997). However, cognitive
constructs, such as representation and information proces-
sing (e.g., processes associated with inference and
decision-making), were not considered legitimate elements
of a psychological theory. Consequently, Behaviorism

eventually came under heavy criticism for its inability
to account for many aspects of cognition, especially
language and other higher-level functions (Chomsky
1959). After the so-called Cognitive Revolution, when
researchers began to focus on the mechanisms by
which the brain stores and processes information, the
depth and extent of psychological theories were dramati-
cally expanded (Miller 2003). Relative to the state of
current cognitive psychology, Behaviorist research was
extremely limited in the scientific questions that it
addressed, the range of explanations it could offer, and
the empirical phenomena it could explain.

The comparison of Bayesian modeling to Behaviorism
may seem surprising considering that Bayesian models
appear to contain unobservable cognitive constructs,
such as hypotheses and their subjective probabilities.
However, these constructs rarely have the status of
actual psychological assumptions. Psychological theories
of representation concern more than just what information
is tracked by the brain; they include how that information
is encoded, processed, and transformed. The Fundamen-
talist Bayesian view takes no stance on whether or how the
brain actually computes and represents probabilities of
hypotheses. All that matters is whether behavior is consist-
ent with optimal action with respect to such probabilities
(Anderson 1990; 1991b). This means of sidestepping ques-
tions of representation can be viewed as a strength of the
rational approach, but it also means that Bayesian prob-
abilities are not necessarily psychological beliefs. Instead,
they are better thought of as tools used by the researcher
to derive behavioral predictions. The hypotheses them-
selves are not psychological constructs either, but
instead reflect characteristics of the environment. The
set of hypotheses, together with their prior probabilities,
constitute a description of the environment by specifying
the likelihood of all possible patterns of empirical obser-
vations (e.g., sense data). According to Bayesian Funda-
mentalism, this description is an accurate one, and by
virtue of its accuracy it is determined solely by the environ-
ment. There is no room for psychological theorizing about
the nature of the hypothesis set, because such theories
logically could only take the form of explaining how
people’s models of the environment are incorrect. Accord-
ing to Bayesian Fundamentalism, by grounding the
hypotheses and prior in the environment (Anderson
1990), Bayesian models make predictions directly from
the environment to behavior, with no need for psychologi-
cal assumptions of any sort.

In many Bayesian models, the hypotheses are not
expressed as an unstructured set, but instead emerge
from a generative model of the environment. The genera-
tive model (which is a component of the Bayesian model)
often takes the form of a causal network, in which the
probabilities of observable variables depend on the
values of unobservable, latent variables. Hypotheses
about observable variables correspond to values of the
latent variables. For example, in the topic model of text
comprehension, the words in a passage (the observables)
are assumed to be generated by a stochastic process para-
meterized by the weights of various semantic topics within
the passage (Griffiths et al. 2007). However, the model
makes no claim about the psychological status of the
latent variables (i.e., the topic weights). These variables
serve only to define the joint distribution over all possible
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word sequences, and the model is evaluated only with
respect to whether human behavior is consistent with
that distribution. Whether people explicitly represent
topic weights (or their posterior distributions) or
whether they arrive at equivalent inferences based on
entirely different representations is outside the scope of
the model (Griffiths et al. 2007, p. 212). Therefore, genera-
tive models and the latent variables they posit do not con-
stitute psychological constructs, at least according to the
fundamentalist viewpoint. Instead, they serve as descrip-
tions of the environment and mathematical tools that
allow the modeler to make behavioral predictions. Just
as in Behaviorist theories, the path from environmental
input to behavioral prediction bypasses any consideration
of cognitive processing.

To take a simpler example, Figure 1 shows a causal
graphical model corresponding to a simplified version of
Anderson’s (1991b) rational model of categorization. The
subject’s task in this example is to classify animals as
birds or mammals. The rational model assumes that
these two categories are each partitioned into subcate-
gories, which are termed clusters. The psychological pre-
diction is that classification behavior corresponds (at a
computational level) to Bayesian inference over this gen-
erative model. If a subject were told that a particular
animal can fly, the optimal probability that it is a bird
would equal the sum of the posterior probabilities of all
the clusters within the bird category (and likewise for
mammal). Critically, however, the clusters do not necess-
arily correspond to actual psychological representations.
All that matters for predicting behavior is the joint prob-
ability distribution over the observable variables (i.e., the
features and category labels). The clusters help the

modeler to determine this distribution, but the brain
may perform the computations in a completely different
manner. In the discussion of Bayesian Enlightenment
below (sect. 6), we return to the possibility of treating
latent variables and generative models as psychological
assumptions about knowledge representation. However,
the important point here is that, according to the Funda-
mentalist Bayesian view, they are not. Generative
models, the hypotheses they specify, and probability distri-
butions over those hypotheses are all merely tools for
deriving predictions from a Bayesian model. The model
itself exists at a computational level, where its predictions
are defined only based on optimal inference and decision-
making. The mechanisms by which those decisions are
determined are outside the model’s scope.

4.1. Consequences of the denial of mechanism

By eschewing mechanism and aiming to explain behavior
purely in terms of rational analysis, the Fundamentalist
Bayesian program raises the danger of pushing the field
of psychology back toward the sort of restrictive state
experienced during the strict Behaviorist era. Optimality
and probabilistic inference are certainly powerful tools
for explaining behavior, but taken alone they are insuffi-
cient. A complete science of cognition must draw on the
myriad theoretical frameworks and sources of evidence
bearing on how cognition is carried out, as opposed to
just its end product. These include theories of knowledge
representation, decision-making, mental models,
dynamic-system approaches, attention, executive control,
heuristics and biases, reaction time, embodiment, devel-
opment, and the entire field of cognitive neuroscience,

Figure 1. Simplified generative model based on Anderson’s (1991b) rational model of categorization. Upper and lower nodes
represent observable variables (category labels and features, respectively). Middle nodes represent clusters, which correspond to
latent variables. Judgment of category membership based on feature information is assumed to be consistent with Bayesian
inference over this probabilistic structure. However, the clusters only serve as mathematical constructs that determine the model’s
predictions. The question of whether clusters relate to actual psychological representations is outside the scope of the model. The
original model treats category labels on par with features (so that clusters are not necessarily nested within categories), but this
difference does not alter the point made here.
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to name just a few. Many of these lines of research would
be considered meaningless within the Behaviorist frame-
work, and, likewise, they are all rendered irrelevant by
the strict rational view. Importantly, the limitation is not
just on what types of explanations are considered meaning-
ful, but also on what is considered worthy of explanation –
that is, what scientific questions are worth pursuing and
what types of evidence are viewed as informative.

An important argument in favor of rational over
mechanistic modeling is that the proliferation of mechan-
istic modeling approaches over the past several decades
has led to a state of disorganization, wherein the substan-
tive theoretical content of the models cannot be disen-
tangled from the idiosyncrasies of their implementations.
Distillation of models down to their computational prin-
ciples would certainly aid in making certain comparisons
across modeling frameworks. For example, both neural
network (Burgess & Hitch 1999) and production system
(Anderson et al. 1998) models of serial recall have
explained primacy effects by using the same assumptions
about rehearsal strategies, despite the significant architec-
tural differences in which this common explanation is
implemented. The rational approach is useful in this
regard in that it eases comparison by emphasizing the
computational problems that models aim to solve.

However, it would be a serious overreaction simply to
discard everything below the computational level. As in
nearly every other science, understanding how the
subject of study (i.e., the brain) operates is critical to
explaining and predicting its behavior. As we argue in
section 5, mechanistic explanations tend to be better
suited for prediction of new phenomena, as opposed to
post hoc explanation. Furthermore, algorithmic expla-
nations and neural implementations are an important
focus of research in their own right. Much can be
learned from consideration of how the brain handles the
computational challenge of guiding behavior efficiently
and rapidly in a complex world, when optimal decision-
making (to the extent that it is even well-defined) is not
possible. These mechanistic issues are at the heart of
most of the questions of theoretical or practical impor-
tance within cognitive science, including questions of rep-
resentation, timing, capacity, anatomy, and pathology.

For example, connectionist models have proven valuable
in reconceptualizing category-specific deficits in semantic
memory as arising from damage to distributed represen-
tations in the brain (for a review, see Rogers & Plaut
2002), as opposed to being indicative of damage to localized
representations (e.g., Caramazza & Shelton 1998).
Although these insights rely on statistical analyses of how
semantic features are distributed (e.g., Cree & McRae
2003), and, therefore, could in principle be characterized
by a Bayesian model, the connectionist models were tre-
mendously useful in motivating this line of inquiry.
Additionally, follow-on studies have helped characterize
impaired populations and have suggested interventions,
including studies involving Alzheimer’s patients (Devlin
et al. 1998) and related work exploring reading difficulties
resulting from developmental disorders and brain injury
(Joanisse & Seidenberg 1999; 2003; Plaut et al. 1996).

Even when the goal is only to explain inference or
choice behavior (setting aside reaction time), optimal
probabilistic inference is not always sufficient. This is
because the psychological mechanisms that give rise to

behavior often at best only approximate the optimal sol-
ution. These mechanisms produce signature deviations
from optimality that rational analysis has no way of antici-
pating. Importantly, considering how representations are
updated in these mechanisms can suggest informative
experiments.

For example, Sakamoto et al. (2008) investigated learn-
ing of simple perceptual categories that differed in the
variation among items within each category. To classify
new stimuli accurately, subjects had to estimate both the
means and variances of the categories (stimuli varied
along a single continuous dimension). Sakamoto et al. con-
sidered a Bayesian model that updates its estimates opti-
mally, given all past instances of each category, and a
mechanistic (cluster) model that learns incrementally in
response to prediction error. The incremental model natu-
rally produces recency effects, whereby more recent obser-
vations have a greater influence on its current state of
knowledge (Estes 1957), in line with empirical findings
in this type of task (e.g., Jones & Sieck 2003). Simple
recency effects are no challenge to Bayesian models,
because one can assume non-stationarity in the environ-
ment (e.g., Yu & Cohen 2008). However, the incremental
model predicts a more complex recency effect whereby,
under certain presentation sequences, the recency effect
in the estimate of a category’s mean induces a bias in the
estimate of its variance. This bias arises purely as a by-
product of the updating algorithm and has no connection
to rational, computational-level analyses of the task.
Human subjects exhibited the same estimation bias pre-
dicted by the incremental model, illustrating the utility
of mechanistic models in directing empirical investigations
and explaining behavior.

Departures from strict rational orthodoxy can lead to
robust and surprising predictions, such as in work consider-
ing the forces that mechanistic elements exert on one
another in learning and decision making (Busemeyer &
Johnson 2008; Davis & Love 2010; Spencer et al. 2009).
Such work often serves to identify relevant variables that
would not be deemed theoretically relevant under a Funda-
mentalist Bayesian view (Clearfield et al. 2009). Even
minimal departures from purely environmental consider-
ations, such as manipulating whether information plays
the role of cue or outcome within a learning trial, can
yield surprising and robust results (Love 2002; Markman
& Ross 2003; Ramscar et al. 2010; Yamauchi & Markman
1998). The effects of this manipulation can be seen in a
common transfer task, implying that it is the learners’
knowledge that differs and not just their present goals.

Focusing solely on computational explanations also elim-
inates many of the implications of cognitive science for other
disciplines. For example, without a theory of the functional
elements of cognition, little can be said about cognitive
factors involved in psychological disorders. Likewise,
without a theory of the physiology of cognition, little can
be said about brain disease, trauma, or psychopharma-
cology. (Here the situation is even more restrictive than in
Behaviorism, which would accept neurological data as
valid and useful.) Applications of cognitive theory also
tend to depend strongly on mechanistic descriptions of the
mind. For example, research in human factors relies
on models of timing and processing capacity, and appli-
cations to real-world decision-making depend on the heuris-
tics underlying human judgment. Understanding these
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heuristics can also lead to powerful new computational
algorithms that improve the performance of artificially intel-
ligent systems in complex tasks (even systems built on Baye-
sian architectures). Rational analysis provides essentially no
insight into any of these issues.

4.2. Integration and constraints on models

One advantage of Behaviorism is that its limited range of
explanatory principles led to strong cohesion among
theories of diverse phenomena. For example, Skinner
(1957) attempted to explain human verbal behavior by
using the same principles previously used in theories of
elementary conditioning. It might be expected that the
Bayesian program would enjoy similar integration
because of its reliance on the common principles of
rational analysis and probabilistic inference. Unfortu-
nately, this is not the case in practice, because the
process of rational analysis is not sufficiently constrained,
especially as applied to higher-level cognition.

Just as mechanistic modeling allows for alternative
assumptions about process and representation, rational
modeling allows for alternative assumptions about the
environment in which the cognitive system is situated
(Anderson 1990). In both cases, a principal scientific
goal is to decide which assumptions provide the best expla-
nation. With Bayesian models, the natural approach dic-
tated by rational analysis is to make the generative
model faithful to empirical measurements of the environ-
ment. However, as we observe in section 5, this empirical
grounding is rarely carried out in practice. Consequently,
the rational program loses much of its principled nature,
and models of different tasks become fractionated
because there is nothing but the math of Bayesian infer-
ence to bind them together.

At the heart of every Bayesian model is a set of assump-
tions about the task environment, embodied by the hypoth-
esis space and prior distribution, or, equivalently, by the
generative model and prior distributions for its latent
variables. The prior distribution is the well-known and oft-
criticized lack of constraint in most Bayesian models. As
explained in section 3, the prior provides the starting
points for the vote-counting process of Bayesian inference,
thereby allowing the model to be initially biased towards
some hypotheses over others. Methods have been developed
for using uninformative priors that minimize influence on
model predictions, such as Jeffreys priors (Jeffreys 1946) or
maximum-entropy priors (Jaynes 1968). However, a much
more serious source of indeterminacy comes from the
choice of the hypothesis set itself, or equivalently, from the
choice of the generative model.

The choice of generative model often embodies a rich
set of assumptions about the causal and dynamic structure
of the environment. In most interesting cases, there are
many alternative assumptions that could be made, but
only one is considered. For example, the CrossCat
model of how people learn multiple overlapping systems
of categories (Shafto et al., in press) assumes that category
systems constitute different partitions of a stimulus space,
that each category belongs to exactly one system, and that
each stimulus feature or dimension is relevant to exactly
one category system and is irrelevant to all others. These
assumptions are all embodied by the generative model
on which CrossCat is based. There are clearly alternatives

to these assumptions, for which intuitive arguments can be
made (e.g., for clothing, the color dimension is relevant for
manufacturing, laundering, and considerations of appear-
ance), but there is no discussion of these alternatives, jus-
tification of the particular version of the model that was
evaluated, or consideration of the implications for model
predictions. Other than the assumption of optimal infer-
ence, all there is to a Bayesian model is the choice of gen-
erative model (or hypothesis set plus prior), so it is a
serious shortcoming when a model is developed or pre-
sented without careful consideration of that choice. The
neglected multiplicity of models is especially striking con-
sidering the rational theorist’s goal of determining the –
presumably unique – optimal pattern of behavior.

Another consequence of insufficient scrutiny of genera-
tive models (or hypothesis sets more generally) is a failure
to recognize the psychological commitments they entail.
These assumptions often play a central role in the expla-
nation provided by the Bayesian model as a whole,
although that role often goes unacknowledged. Further-
more, the psychological assumptions implicitly built into
a generative model can be logically equivalent to pre-exist-
ing theories of the same phenomena. For example, Kemp
et al. (2007) propose a Bayesian model of the shape bias in
early word learning, whereby children come to expect a
novel noun to be defined by the shape of the objects it
denotes, rather than other features such as color or
texture. The model learns the shape bias through obser-
vation of many other words with shape-based definitions,
which shifts evidence to an overhypothesis that most
nouns in the language are shape-based. The exposition
of the model is a mathematically elegant formalization of
abstract induction. However, it is not Bayes’ Rule or
even the notion of overhypotheses that drives the predic-
tion; rather it is the particular overhypotheses that were
built into the model. In other words, the model was
endowed with the capability to recognize a particular
pattern (viz., regularity across words in which perceptual
dimensions are relevant to meaning), so the fact that it
indeed recognizes that pattern when presented with it is
not surprising or theoretically informative. Furthermore,
the inference made by the model is logically the same as
the notion of second-order generalization proposed pre-
viously by Linda Smith and colleagues (e.g., Smith et al.
2002). Detailed mechanistic modeling has shown how
second-order generalization can emerge from the inter-
play between attentional and associative processes
(Colunga & Smith 2005), in contrast to the more tautolo-
gical explanation offered by the Bayesian model. There-
fore, at the level of psychological theory, Kemp et al.’s
(2007) model merely recapitulates a previously established
idea in a way that is mathematically more elegant but psy-
chologically less informative.

In summary, Bayesian Fundamentalism is simul-
taneously more restrictive and less constrained than Beha-
viorism. In terms of modes of inquiry and explanation,
both schools of thought shun psychological constructs, in
favor of aiming to predict behavior directly from environ-
mental inputs. However, under Behaviorism this restric-
tion was primarily a technological one. Nothing in the
Behaviorist philosophy would invalidate relatively recent
tools that enable direct measurements of brain function,
such as neuroimaging, EEG, and single-unit recording
(at least as targets of explanation, if not as tools through
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which to develop theories of internal processes). Indeed,
these techniques would presumably have been embraced,
as they satisfy the criterion of direct observation. Bayesian
Fundamentalism, in contrast, rejects all measures of brain
processing out of principle, because only the end product
(i.e., behavior) is relevant to rational analysis.2 At the
same time, whereas Behaviorist theories were built from
simple mechanisms and minimal assumptions, Bayesian
models often depend on complex hypothesis spaces based
on elaborate and mathematically complex assumptions
about environmental dynamics. As the emphasis is generally
on rational inference (i.e., starting with the assumptions of
the generative model and deriving optimal behavior from
there), the assumptions themselves generally receive little
scrutiny. The combination of these two factors leads to a
dangerously under-constrained research program, in
which the core assumptions of a model (i.e., the choice of
hypothesis space) can be made at the modeler’s discretion,
without comparison to alternatives and without any require-
ment to fit physiological or other process-level data.

5. Bayes as evolutionary psychology

In addition to the rejection of mechanistic explanation, a
central principle of the Fundamentalist Bayesian approach
to cognition is that of optimality. The claim that human be-
havior can be explained as adaptation to the environment
is also central to evolutionary psychology. On the surface,
these two approaches to understanding behavior seem
very different, as their content and methods differ. For
example, one core domain of inquiry in evolutionary psy-
chology is mating, which is not often studied by cognitive
psychologists, and theories in evolutionary psychology
tend not to be computational in nature, whereas rational
Bayesian approaches are by definition. Thus, one advan-
tage of rational Bayesian accounts is that they formalize
notions of optimality, which can clarify assumptions and
allow for quantitative evaluation. Despite these differ-
ences, Bayesian Fundamentalism and evolutionary psy-
chology share a number of motivations and assumptions.
Indeed, Geisler and Diehl (2003) propose a rational Baye-
sian account of Darwin’s theory of natural selection. In this
section, we highlight the commonalities and important
differences between these two approaches to understand-
ing human behavior.

We argue that Bayesian Fundamentalism is vulnerable to
many of the criticisms that have been leveled at evolutionary
psychology. Indeed, we argue that notions of optimality in
evolutionary psychology are more complete and properly
constrained than those forwarded by Bayesian Fundamen-
talists, because evolutionary psychology considers other
processes than simple adaptation (e.g., Buss et al. 1998).
Bayesian Fundamentalism appropriates some concepts
from evolutionary psychology (e.g., adaptation, fitness, and
optimality), but leaves behind many other key concepts
because of its rejection of mechanism. Because it is mech-
anisms that evolve, not behaviors, Bayesian Fundamental-
ism’s assertions of optimality provide little theoretical
grounding and are circular in a number of cases.

Basic evolutionary theory holds that animal behavior is
adapted by natural selection, which increases inclusive
fitness. High fitness indicates that an animal’s behaviors
are well suited to its environment, leading to reproductive

success. On the assumption that evolutionary pressures
tune a species’ genetic code such that the observed pheno-
type gives rise to optimal behaviors, one can predict an
animal’s behavior by considering the environment in
which its ancestors flourished and reproduced. According
to evolutionary psychologists, this environment, referred
to as the Environment of Evolutionary Adaptedness
(EEA), must be understood in order to comprehend the
functions of the brain (Bowlby 1969). Thus, evolutionary
explanations of behavior tend to focus on the environ-
ment – a focus that can occur at the expense of careful
consideration of mechanism. However, as discussed exten-
sively further on in section 5.3 and in contrast to Bayesian
Fundamentalism, some key concepts in evolutionary psy-
chology do rely on mechanistic considerations, and these
concepts are critical for grounding notions of adaptation
and optimization. These key concepts are neglected in
Bayesian Fundamentalism.

Critically, it is not any function that is optimized by
natural selection, but only those functions that are relevant
to fitness. To use Oaksford and Chater’s (1998a) example,
animals may be assumed to use optimal foraging strategies
because (presumably) gathering food efficiently is relevant
to the global goal of maximizing inclusive fitness (see
Hamilton 1964). Thus, in practice, evolutionary argu-
ments, like rational theories of cognition, require specifica-
tion of the environment and the behaviors that increase
fitness. For example, Anderson’s (1991b) rational model
of category learning is intended to maximize prediction
of unknown information in the environment, a behavior
that presumably increases fitness.

Like rational approaches to cognition, evolutionary psy-
chology draws inspiration from evolutionary biology and
views much of human behavior as resulting from adap-
tations shaped by natural selection (Buss 1994; Pinker
2002; Tooby & Cosmides 2005). The core idea is that
recurring challenges in our ancestral environments (i.e.,
EEA) shaped our mental capacities and proclivities. This
environmental focus is in the same spirit as work in eco-
logical psychology (Gibson 1979; Michaels & Carello
1981). Following from a focus on specific challenges and
adaptations, evolutionary theories often propose special-
purpose modules. For example, evolutionary psychologists
have proposed special-purpose modules for cheater detec-
tion (Cosmides & Tooby 1992), language acquisition
(Pinker 1995), incest avoidance (Smith 2007), and snake
detection (Sperber & Hirschfeld 2003). Much like evol-
utionary psychology’s proliferation of modules, rational
models are developed to account for specific behaviors,
such as children’s ability to give the number of objects
requested (Lee & Sarnecka 2010), navigation when disor-
iented in a maze (Stankiewicz et al. 2006), and understand-
ing a character’s actions in an animation (Baker et al.
2009), at the expense of identifying general mechanisms
and architectural characteristics (e.g., working memory)
that are applicable across a number of tasks (in which
the specific behaviors to be optimized differ).

5.1. An illustrative example of rational analysis
as evolutionary argument

Perhaps the rational program’s focus on environmental
adaptation is best exemplified by work in early vision.
Early vision is a good candidate for rational investigation,
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as the visual environment has likely been stable for millen-
nia and the ability to perceive the environment accurately
is clearly related to fitness. The focus on environmental
statistics is clear in Geisler et al.’s (2001) work on
contour detection. In this work, Geisler and colleagues
specify how an ideal classifier detects contours and
compare this ideal classifier’s performance to human per-
formance. To specify the ideal classifier, the researchers
gathered natural image statistics that were intended to
be representative of the environment in which our visual
system evolved. Implicit in the choice of images are
assumptions about what the environment was like.
Additionally, the analysis requires assuming which
measures or image statistics are relevant to the contour
classification problem.

Geisler et al. selected a number of natural images of
mountains, forests, coastlines, and so forth, to characterize
our ancestral visual environment. From these images, they
measured certain statistics they deemed relevant to
contour detection. Their chosen measures described
relationships among edge segments belonging to the
same contour, such as the distance between the segments
and their degree of colinearity. To gather these statistics,
expert raters determined whether two edge elements
belonged to the same contour in the natural images.
These measures specify the likelihood and prior in the
Bayesian ideal observer. The prior for the model is
simply the probability that two randomly selected edge
elements belong to the same contour. The likelihood
follows from a table of co-occurrences of various distances
and angles between pairs of edge elements indexed by
whether each pair belongs to the same contour. Geisler
et al. compared human performance to the ideal observer
in a laboratory task that involved determining whether a
contour was present in novel, meaningless images com-
posed of scattered edge elements. Human performance
and the rational model closely corresponded, supporting
Geisler et al.’s account.

Notice that there is no notion of mechanism (i.e.,
process or representation) in this account of contour
detection. The assumptions made by the modeler
include what our ancestral environment was like and
which information in this environment is relevant.
Additionally, it is assumed that the specific behavior
modeled (akin to a module in evolutionary psychology) is
relevant to fitness. These assumptions, along with demon-
strating a correlation with human performance, are the
intellectual contribution of the work. Finally, rational the-
ories assume optimal inference as reflected in the Bayesian
classification model. Specifying the Bayesian model may
be technically challenging, but is not part of the theoretical
contribution (i.e., it is a math problem, not a psychology
problem). The strength of Geisler et al.’s (2001) work
rests in its characterization of the environment and the
statistics of relevance.

Unfortunately, the majority of rational analyses do not
include any measurements from actual environments,
despite the fact that the focus of such theories is on the
environment (for a similar critique, see Murphy 1993).
Instead, the vast majority of rational analysis in cognition
relies on intuitive arguments to justify key assumptions.
In some cases, psychological phenomena can be explained
from environmental assumptions that are simple and
transparent enough not to require verification (e.g.,

McKenzie & Mikkelsen 2007; Oaksford & Chater 1994).
However, more often, Bayesian models incorporate
complex and detailed assumptions about the structure of
the environment that are far from obvious and are not sup-
ported by empirical data (e.g., Anderson 1991b; Brown &
Steyvers 2009; Goodman et al. 2008b; Steyvers et al. 2009;
Tenenbaum & Griffiths 2001). Cognitive work that does
gather environmental measures is exceedingly rare and
tends to rely on basic statistics to explain general behavior-
al tendencies and judgments (e.g., Anderson & Schooler
1991; Griffiths & Tenenbaum 2006). This departure
from true environmental grounding can be traced back
to John Anderson’s (1990; 1991b) seminal contributions
in which he popularized the rational analysis of cognition.
In those works, he specified a series of steps for conduct-
ing such analyses. Step 6 of the rational method (Anderson
1991b) is to revisit assumptions about the environment
and relevant statistics when the model fails to account
for human data. In practice, this step involves the mode-
ler’s ruminating on what the environment is like and
what statistics are relevant, rather than actual study of
the environment. This is not surprising given that most
cognitive scientists are not trained to characterize ances-
tral environments. For example, at no point in the devel-
opment of Anderson’s (1991b) rational model of category
learning is anything in the environment actually measured.
Although one purported advantage of rational analysis is
the development of zero-parameter, non-arbitrary
models, it would seem that the theorist has unbounded
freedom to make various assumptions about the environ-
ment and the relevant statistics (see Sloman & Fernbach
[2008] for a similar critique). As discussed in the next
section, similar criticisms have been made of evolutionary
psychology.

5.2. Too much flexibility in evolutionary and rational
explanations?

When evaluating any theory or model, one must consider
its fit to the data and its flexibility to account for other pat-
terns of results (Pitt et al. 2002). Models and theories are
favored that fit the data and have low complexity (i.e., are
not overly flexible). One concern we raise is whether
rational approaches offer unbounded and hidden flexi-
bility to account for any observed data. Labeling a
known behavior as “rational” is not theoretically significant
if it is always possible for some rational explanation to be
constructed. Likewise, evolutionary psychology is fre-
quently derided as simply offering “just so” stories
(Buller 2005, but see Machery & Barrett 2006). Adapta-
tionist accounts certainly provide constraint on expla-
nation compared to non-adaptationist alternatives, but
taken alone they still allow significant flexibility in terms
of assumptions about the environment and the extent to
which adaptation is possible. For example, to return to
the foraging example, altering one’s assumptions about
how food rewards were distributed in ancestral environ-
ments can determine whether an animal’s search process
(i.e., the nature and balance of exploitative and exploratory
decisions) is optimal. Likewise, the target of optimization
can be changed. For example, inefficiencies in an
animal’s foraging patterns for food-rich environments
can be explained after the fact as an adaptation to
ensure the animal does not become morbidly obese. On
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the other hand, if animals were efficient in abundant
environments and became obese, one could argue that
foraging behaviors were shaped by adaptation to environ-
ments in which food was not abundant. If, no matter the
data, there is a rational explanation for a behavior, it is
not a contribution to label a behavior as rational.
Whereas previous work in the heuristics-and-biases tra-
dition (Tversky & Kahneman 1974) cast the bulk of cogni-
tion as irrational using a fairly simplistic notion of
rationality, Bayesian Fundamentalism finds rationality to
be ubiquitous based on under-constrained notions of
rationality.

To provide a recent example from the literature, the
persistence of negative traits, such as anxiety and insecur-
ity that lower an individual’s fitness, has been explained by
appealing to these traits’ utility to the encompassing group
in signaling dangers and threats facing the group (Ein-Dor
et al. 2010). While this ingenious explanation could be
correct, it illustrates the incredible flexibility that adaptive
accounts can marshal in the face of a challenging data
point.

Similar criticisms have been leveled at work in evol-
utionary biology. For example, Gould and Lewontin
(1979) have criticized work that develops hypotheses
about the known functions of well-studied organs as “back-
ward-looking.” One worry is that this form of theorizing
can lead to explanations that largely reaffirm what is cur-
rently believed. Work in evolutionary psychology has
been criticized for explaining unsurprising behaviors
(Horgan 1999), such as, that men are less selective about
who they will mate with than are women. Likewise, we
see a tendency for rational analyses to largely re-express
known findings in the language of Bayesian optimal behav-
ior. The work of Geisler et al. (2001) on contour percep-
tion is vulnerable to this criticism as it largely
recapitulates Gestalt principles (e.g., Wertheimer 1923/
1938) in the language of Bayes. In cognition, the rational
rules model (Goodman et al. 2008b) of category learning
reflects many of the intuitions of previous models, such
as the rule-plus-exception (RULEX) model (Nosofsky
et al. 1994), in a more elegant and expressive Bayesian
form that does not make processing predictions. In other
cases, the intuitions from previous work are re-expressed
in more general Bayesian terms in which particular
choices for the priors allow the Bayesian model to mimic
the behavior of existing models. For example, unsuper-
vised clustering models using simplicity principles based
on minimum description length (MDL; Pothos & Chater
2002) are recapitulated by more flexible approaches
phrased in the language of Bayes (Austerweil & Griffiths
2008; Griffiths et al. 2008b). A similar path of model
development has occurred in natural language processing
(Ravi & Knight 2009).

One motivation for rational analysis was to prevent
models with radically different assumptions from making
similar predictions (Anderson 1991b). In reality, the
modeler has tremendous flexibility in characterizing the
environment (see Buller [2005] for similar arguments).
For example, the studies by Dennis and Humphreys
(1998) and Shiffrin and Steyvers (1998) both offer rational
accounts of memory (applicable to word-list tasks) that
radically differ, but both do a good job with the data and
are thought-provoking. According to the rational
program, analysis of the environment and the task

should provide sufficient grounding to constrain theory
development. Cognitive scientists (especially those
trained in psychology) are not expert in characterizing
the environment in which humans evolved, and it is not
always clear what this environment was like. As in exper-
imental sciences, our understanding of past environments
is constantly revised, rather than providing a bedrock from
which to build rational accounts of behavior. Adding
further complexity, humans can change the environment
to suit their needs rather than adapt to it (Kurz &
Tweney 1998).

One factor that provides a number of degrees of
freedom to the rational modeler is that it is not clear
which environment (in terms of when and where) is evolu-
tionarily relevant (i.e., for which our behavior was opti-
mized). The relevant environment for rational action
could be the local environment present in the laboratory
task, similar situations (however defined) that the person
has experienced, all experiences over the person’s life, all
experiences of our species, all experiences of all ancestral
organisms traced back to single cell organisms, and so on.
Furthermore, once the relevant environment is specified
and characterized, the rational theorist has considerable
flexibility in characterizing which relevant measures or
statistics from the environment should enter into the
optimality calculations. When considered in this light,
the argument that rational approaches are parameter-
free and follow in a straightforward manner from the
environment is tenuous at best.

5.3. Optimization occurs over biological mechanisms,
not behaviors

It is non-controversial that many aspects of our behavior
are shaped by evolutionary processes. However, evolution-
ary processes do not directly affect behavior, but instead
affect the mechanisms that give rise to behavior when
coupled with environmental input (McNamara &
Houston 2009). Assuming one could properly characterize
the environment, focusing solely on how behavior should
be optimized with respect to the environment is insuffi-
cient, as the physical reality of the brain and body is neg-
lected. Furthermore, certain aspects of behavior, such as
the time to execute some operation (e.g., the decision
time to determine whether a person is a friend or foe),
are closely linked to mechanistic considerations.

Completely sidestepping mechanistic considerations
when considering optimality leads to absurd conclusions.
To illustrate, it may not be optimal or evolutionarily advan-
tageous to ever age, become infertile, and die; but these
outcomes are universal and follow from biological con-
straints. It would be absurd to seriously propose an
optimal biological entity that is not bounded by these bio-
logical and physical realities, but this is exactly the reason-
ing Bayesian Fundamentalists follow when formulating
theories of cognition. Certainly, susceptibility to disease
and injury impact inclusive fitness more than many
aspects of cognition do. Therefore, it would seem
strange to assume that human cognition is fully optimized
while these basic challenges, which all living creatures past
and present face, are not. Our biological reality, which is
ignored by Bayesian Fundamentalists, renders optimal sol-
utions – defined solely in terms of choice behavior –
unrealistic and fanciful for many challenges.
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Unlike evolutionary approaches, rational approaches to
cognition, particularly those in the Bayesian Fundamental-
ist tradition, do not address the importance of mechanism
in the adaptationist story. Certain physical limitations and
realities lead to the prevalence of certain designs. Which
design prevails is determined in part by these physical rea-
lities and the contemporaneous competing designs in the
gene pool. As Marcus (2008) reminds us, evolution is the
survival of the best current design, not survival of the glob-
ally optimal design. Rather than the globally optimal
design winning out, often a locally optimal solution (i.e.,
a design better than similar designs) prevails (Dawkins
1987; Mayr 1982). Therefore, it is important to consider
the trajectory of change of the mechanism (i.e., current
and past favored designs), rather than to focus exclusively
on which design is globally optimal.

As Marcus (2008) notes, many people are plagued with
back pain because the human spine is adapted from
animals that walk on four paws, not two feet. This is
clearly not the globally optimal design, indicating that
the optimization process occurs over constraints not
embodied in rational analyses. The search process for
the best design is hampered by the set of current
designs available. These current designs can be adapted
by descent-with-modification, but there is no purpose or
forethought to this process (i.e., there is no intelligent
designer). It simply might not be possible for our
genome to code for shock absorbers like those in auto-
mobiles, given that the current solution is locally optimal
and distant from the globally optimal solution. In the
case of the human spine, the current solution is clearly
not globally optimal, but is good enough to get the job
done. The best solution is not easily reachable and might
never be reached. If evolution settles on such a bad
design for our spine, it seems unlikely that aspects of cog-
nition are fully optimized. Many structures in our brains
share homologs with other species. Structures more pro-
minent in humans, such as the frontal lobes, were not
anticipated, but like the spine, resulted from descent-
with-modification (Wood & Grafman 2003).

The spine example makes clear that the history of the
mechanism plays a role in determining the present sol-
ution. Aspects of the mechanism itself are often what is
being optimized rather than the resulting behavior. For
example, selection pressures will include factors such as
how much energy certain designs require. The human
brain consumes 25% of a person’s energy, yet accounts
for only 2% of a person’s mass (Clark & Sokoloff 1999).
Such non-behavioral factors are enormously important to
the optimization process, but are not reflected in rational
analyses, as these factors are tied to a notion of mechan-
ism, which is absent in rational analyses. Any discussion
of evolution optimizing behavior is incomplete without
consideration of the mechanism that generates the behav-
ior. To provide an example from the study of cognition, in
contrast to Anderson’s (1991b) rational analysis of con-
cepts solely in terms of environmental prediction, con-
cepts might also serve other functions, such as increasing
“cognitive economy” in limited-capacity memory systems
that would otherwise be swamped with details (Murphy
1993; Rosch 1978).

The notion of incremental improvement of mechanisms
is also important because it is not clear that globally
optimal solutions are always well defined. The optimality

of Bayesian inference is well supported in “small worlds”
in which an observer can sensibly assign subjective prob-
abilities to all possible contingencies (Savage 1954).
However, Binmore (2009) argues that proponents of Baye-
sian rationality overextend this reasoning when moving
from laboratory tasks to the natural world. Normative
support for the Bayesian framework breaks down in the
latter case because, in an unconstrained environment,
there is no clear rational basis for generating prior prob-
abilities. Evolutionary theory does not face this problem
because it relies on incremental adjustment rather than
global optimization. Furthermore, shifting focus to the
level of mechanism allows one to study the relative per-
formance of those mechanisms without having to explicitly
work out the optimal pattern of behavior in a complex
environment (Gigerenzer & Todd 1999).

The preceding discussion assumes that we are opti-
mized in at least a local sense. This assumption is likely
invalid for many aspects of the mechanisms that give rise
to behavior. Optimization by natural selection is a slow
process that requires consistent selective pressure in a
relatively stable environment. Many of the behaviors that
are considered uniquely human are not as evolutionarily
old as basic aspects of our visual system. It is also not
clear how stable the relevant environment has been. To
provide one example, recent simulations support the
notion that many syntactic properties of language cannot
be encoded in a language module, and that the genetic
basis of language use and acquisition could not coevolve
with human language (Chater et al. 2009).

Finally, while rational theorists focus on adaptation in
pursuit of optimality, evolutionary theorists take a
broader view of the products of evolution. Namely, evol-
ution yields three products: (1) adaptations, (2) by-
products, and (3) noise (Buss et al. 1998). An adaptation
results from natural selection to solve some problem,
whereas a by-product is the consequence of some adap-
tation. To use Bjorklund and Pelligrini’s (2000) example,
the umbilical cord is an adaptation, whereas the belly
button is a by-product. Noise includes random effects
resulting from mutations, drift, and so on. Contrary to
the rational program, one should not take all behaviors
and characteristics of people to be adaptations that
increase (i.e., optimize) fitness.

5.4. Developmental psychology and notions of
capacity limitation: What changes over time?

Although rational Bayesian modeling has a large footprint
in developmental psychology (Kemp et al. 2007; Sobel
et al. 2004; Xu & Tenenbaum 2007b), development pre-
sents basic challenges to the rational approach. One key
question for any developmental model is what develops.
In rational models, the answer is that nothing develops.
Rational models are mechanism-free, leaving only infor-
mation sampled to change over time. Although some
aspects of development are driven by acquisition of
more observations, other aspects of development clearly
reflect maturational changes in the mechanism (see Xu
& Tenenbaum 2007b, p. 169). For example, some
aspects of children’s performance are indexed by prefron-
tal development (Thompson-Schill et al. 2009) rather than
the degree of experience within a domain. Likewise,
teenage boys’ interest in certain stimuli is likely
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attributable more to hormonal changes than to collecting
examples of certain stimuli and settling on certain
hypotheses.

These observations put rational theories of development
in a difficult position. People’s mental machinery clearly
changes over development, but no such change occurs in
a rational model. One response has been to posit rational
theories that are collections of discrepant causal models
(i.e., hypothesis spaces). Each discrepant model is
intended to correspond to a different stage of development
(Goodman et al. 2006; Lucas et al. 2009). In effect, devel-
opment is viewed as consisting of discrete stages, and a
new model is proposed for each qualitative developmental
change. Model selection is used to determine which dis-
crepant model best accounts for an individual’s current
behavior. Although this approach may be useful in charac-
terizing an individual’s performance and current point in
development, it does not offer any explanation for the
necessity of the stages or why developmental transitions
occur. Indeed, rather than accounts of developmental pro-
cesses, these techniques are best viewed as methods to
assess a person’s conceptual model, akin to user modeling
in tutoring systems (Conati et al. 1997). To the extent that
the story of development is the story of mechanism devel-
opment, rational theories have little to say (e.g., Xu &
Tenenbaum 2007b).

Epigenetic approaches ease some of these tensions by
addressing how experience influences gene expression
over development, allowing for bidirectional influences
between experience and genetic activity (Gottlieb 1992;
Johnson 1998). One complication for rational theories is
the idea that different selection pressures are exerted on
organisms at different points in development (Oppenheim
1981). For adults, rigorous play wastes energy and is an
undue risk, but for children, rigorous play may serve a
number of adaptive functions (Baldwin & Baldwin
1977). For example, play fighting may prepare boys for
adult hunting and fighting (Smith 1982). It would seem
that different rational accounts are needed for different
periods of development.

Various mental capacities vary across development and
individuals. In adult cognition, Herbert Simon introduced
the notion of bounded rationality to take into account,
among other things, limitations in memory and processing
capacities (see Simon 1957a). One of the proposals that
grew out of bounded rationality was optimization under
constraints, which posits that people may not perform
optimally in any general sense, but, if their capacities
could be well characterized, people might be found to
perform optimally, given those limitations (e.g., Sargent
1993; Stigler 1961). For instance, objects in the environ-
ment may be tracked optimally, given sensory and
memory limitations (Vul et al. 2009).

Although the general research strategy based on
bounded rationality can be fruitful, it severely limits the
meaning of labeling a behavior as rational or optimal.
Characterizing capacity limitations is essentially an exer-
cise in characterizing the mechanism, which represents a
departure from rational principles. Once all capacity limit-
ations are detailed, notions of rationality lose force. To
provide a perverse example, each person can be viewed
as an optimal version of himself given his own limitations,
flawed beliefs, motivational limitations, and so on. At such
a point, it is not clear what work the rational analysis is

doing. Murphy (1993) makes a similar argument about
the circularity of rational explanations: Animals are
regarded as optimal with respect to their ecological
niche, but an animal’s niche is defined by its behaviors
and abilities. For example, if one assumes that a bat’s
niche involves flying at night, then poor eyesight is not a
counterexample of optimality.

Although these comments may appear negative, we do
believe that considering capacity limitations is a sound
approach that can facilitate the unification of rational
and mechanistic approaches. However, we have doubts
as to the efficacy of current approaches to exploring
capacity limitations. For example, introducing capacity
limitations by altering sampling processes through tech-
niques like the particle filter (Brown & Steyvers 2009)
appears to be motivated more by modeling convenience
than by examination of actual cognitive mechanisms. It
would be a curious coincidence if existing mathematical
estimation techniques just happened to align with
human capacity limitations. In section 6, we consider the
possibility of using (mechanistic) psychological character-
izations of one or more aspects of the cognitive system to
derive bounded-optimality characterizations of decision
processes. Critically, the potential of such approaches
lies in the mutual constraint of mechanistic and rational
considerations, as opposed to rational analysis alone.

To return to development, one interesting consideration
is that reduced capacity at certain points in development is
actually seen as a benefit by many researchers. For
example, one proposal is that children’s diminished
working-memory capacity may facilitate language acqui-
sition by encouraging children to focus on basic regu-
larities (Elman 1993; Newport 1990). “Less is more”
theories have also been proposed in the domain of meta-
cognition. For example, children who overestimate their
own abilities may be more likely to explore new tasks and
be less self-critical in the face of failure (Bjorklund &
Pellegrini 2000). Such findings seem to speak to the
need to consider the nature of human learners, rather
than the nature of the environment. Human learners do
not seem to “turn off” a harmful capacity to narrow
the hypothesis space when it might be prove beneficial
to do so.

6. The role of Bayesian modeling in cognitive
science

The observations in the preceding sections suggest that,
although Bayesian modeling has great potential to
advance our understanding of cognition, there are
several conceptual problems with the Fundamentalist
Bayesian program that limit its potential theoretical contri-
butions. One possible reason is that most current work
lacks a coherent underlying philosophy regarding just
what that contribution should be. In this section, we lay
out three roles for Bayesian modeling in cognitive
science that potentially avoid the problems of the funda-
mentalist approach and that better integrate with other
modes of inquiry. We make no strong commitment that
any of the approaches proposed in this section will
succeed, but we believe these are the viable options if
one wants to use Bayes’ Rule or probabilistic inference
as a component of psychological theory.
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First, Bayesian inference has proven to be exceedingly
valuable as an analysis tool for deciding among scientific
hypotheses or models based on empirical data. We refer
to such approaches as Bayesian Agnosticism, because they
take no stance on whether Bayesian inference is itself a
useful psychological model. Instead, the focus is on using
Bayesian inference to develop model-selection techniques
that are sensitive to true model complexity and that avoid
many of the logical inconsistencies of frequentist hypothesis
testing (e.g., Pitt et al. 2002; Schwarz 1978).

Second, Bayesian models can offer computational-level
theories of human behavior that bypass questions of cogni-
tive process and representation. In this light, Bayesian
analysis can serve as a useful starting point when investi-
gating a new domain, much like how ideal-observer analy-
sis can be a useful starting point in understanding a task,
and thus assist in characterizing human proficiency in
the task. This approach is in line with the Fundamentalist
Bayesian philosophy, but, as the observations of the pre-
vious sections make clear, several changes to current
common practice would greatly improve the theoretical
impact of computational-level Bayesian modeling. Fore-
most, rational analysis should be grounded in empirical
measurement of the environment. Otherwise, the endea-
vor is almost totally unconstrained. Environmental
grounding has yielded useful results in low-level vision
(Geisler et al. 2001) and basic aspects of memory (Ander-
son & Schooler 1991), but the feasibility of this approach
with more complex cognitive tasks remains an open ques-
tion. Furthermore, researchers are faced with the ques-
tions of what is the relevant environment (that behavior
is supposedly optimized with respect to) and what are
the relevant statistics of that environment (that behavior
is optimized over). There is also the question of the objec-
tive function that is being optimized, and how that objec-
tive might vary according to developmental trajectory or
individual differences (e.g., sex or social roles). It may be
impossible in cases to specify what is optimal in any
general sense without considering the nature of the mech-
anism. All of these questions can have multiple possible
answers, and finding which answers lead to the best expla-
nation of the data is part of the scientific challenge. Just as
with mechanistic models, competing alternatives need to
be explicitly recognized and compared. Finally, an una-
voidable limitation of the pure rational approach is that be-
havior is not always optimal, regardless of the choice of
assumptions about the environment and objective func-
tion. Evolution works locally rather than globally, and
many aspects of behavior may be by-products rather
than adaptations in themselves. More importantly, evol-
ution is constrained by the physical system (i.e., the body
and brain) that is being optimized. By excluding the
brain from psychological theory, Bayesian Fundamental-
ism is logically unable to account for mechanistic con-
straints on behavior and unable to take advantage of or
inform us about the wealth of data from areas such as neu-
rophysiology, development, or timing.3

Third, rather than putting all the onus on rational analy-
sis by attempting to explain behavior directly from the
environment, one could treat various elements of Bayesian
models as psychological assumptions subject to empirical
test. This approach, which we refer to as Bayesian Enlight-
enment, seems the most promising, because it allows
Bayesian models to make contact with the majority of

psychological research and theory, which deals with
mechanistic levels of analysis. The remainder of this
section explores several avenues within Bayesian Enlight-
enment. We emphasize up front that all of these directions
represent significant departures from the Fundamentalist
Bayesian tenet that behavior can be explained and under-
stood without recourse to process or representation.

6.1. Bayesian Enlightenment: Taking Bayesian models
seriously as psychological theories

The most obvious candidate within the Bayesian frame-
work for status as a psychological construct or assumption
is the choice of hypothesis space or generative model.
According to the Fundamentalist Bayesian view, the
hypotheses and their prior distribution correspond to the
true environmental probabilities within the domain of
study. However, as far as predicting behavior is concerned,
all that should matter is what the subject believes (either
implicitly or explicitly) are the true probabilities. Decou-
pling information encoded in the brain from ground
truth in the environment (which cannot always be deter-
mined) allows for separation of two different tenets of
the rationalist program. That is, the question of whether
people have veridical mental models of their environments
can be separated from the question of whether people
reason and act optimally with respect to whatever
models they have. A similar perspective has been proposed
in game theory, whereby distinguishing between an
agent’s model of the opponent(s) and rational behavior
with respect to that model can resolve paradoxes of ration-
ality in that domain (Jones & Zhang 2003). Likewise,
Baker et al. (2009) present a model of how people
reason about the intentions of others in which the psycho-
logical assumption is made that people view others as
rational agents (given their current knowledge).

Separating Bayesian inference from the mental models
it operates over opens up those models as a fruitful topic of
psychological study (e.g., Sanborn et al. 2010b). Unfortu-
nately, this view of Bayesian modeling is at odds with
most applications, which focus on the inferential side
and take the generative model for granted, leaving that
critical aspect of the theory to be hand-coded by the
researcher. Thus, the emphasis on rationality marginalizes
most of the interesting psychological issues. The choice of
the generative model or hypothesis space reflects an
assumption about how the subject imputes structure to
the environment and how that structure is represented.
There are often multiple options here (i.e., there is not a
unique Bayesian model of most tasks), and these corre-
spond to different psychological theories. Furthermore,
even those cases that ground the hypothesis space in
empirical data from natural environments tend not to
address how it is learned by individual subjects. One
strong potential claim of the Bayesian framework is that
the most substantial part of learning lies in constructing
a generative model of one’s environment, and that using
that model to make inferences and guide behavior is a rela-
tively trivial (albeit computationally intensive) exercise in
conditional probability. Therefore, treating the generative
model as a psychological construct enables a shift of
emphasis to this more interesting learning problem.
Research focusing on how people develop models of
their environment (e.g., Griffiths & Tenenbaum 2006;
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Mozer et al. 2008; Steyvers et al. 2003) can greatly increase
the theoretical utility of Bayesian modeling by bringing it
into closer contact with the hard psychological questions
of constructive learning, structured representations, and
induction.

Consideration of generative models as psychological
constructs also highlights a fundamental difference
between a process-level interpretation of Bayesian learn-
ing and other learning architectures such as neural net-
works or production systems. The Bayesian approach
suggests that learning involves working backward from
sense data to compute posterior probabilities over latent
variables in the environment, and then determining
optimal action with respect to those probabilities. This
can be contrasted with the more purely feed-forward
nature of most extant models, which learn mappings
from stimuli to behavior and use feedback from the
environment to directly alter the internal parameters
that determine those mappings (e.g., connection weights
or production utilities). A similar contrast has been pro-
posed in the literature on reinforcement learning,
between model-based (planning) and model-free (habit)
learning, with behavioral and neurological evidence that
these exist as separate systems in the brain (Daw et al.
2005). Model-based reinforcement learning and Bayesian
inference have important computational differences, but
this parallel does suggest a starting point for addressing
the important question of how Bayesian learning might
fit into a more complete cognitive architecture.

Prior distributions offer another opportunity for psycho-
logical inquiry within the Bayesian framework. In addition
to the obvious connections to biases in beliefs and expec-
tations, the nature of the prior has potential ties to questions
of representation. This connection arises from the principle
of conjugate priors (Raiffa & Schlaifer 1961). A conjugate
prior for a Bayesian model is a parametric family of prob-
ability distributions that is closed under the evidence-
updating operation of Bayesian inference, meaning that
the posterior is guaranteed also to lie in the conjugate
family after any number of new observations have been
made. Conjugate priors can dramatically simplify compu-
tational and memory demands, because the learner needs
to store and update only the parameters of the conjugate
family, rather than the full evidence distribution. Conjugate
priors are a common assumption made by Bayesian mode-
lers, but this assumption is generally made solely for the
mathematical convenience of the modeler rather than for
any psychological reason. However, considering a conjugate
prior as part of the psychological theory leads to the intri-
guing possibility that the parameters of the conjugate
family constitute the information that is explicitly rep-
resented and updated in the brain. If probabilistic distri-
butions over hypotheses are indeed part of the brain’s
computational currency, then they must be encoded in
some way, and it stands to reason that the encoding gener-
ally converges on one that minimizes the computational
effort of updating knowledge states (i.e., of inferring the pos-
terior after each new observation). Therefore, an interesting
mechanistic-level test of Bayesian theory would be to inves-
tigate whether the variables that parameterize the relevant
conjugate priors are consistent with what is known based
on more established methods about knowledge represen-
tation in various psychological domains. Of course, it is unli-
kely that any extant formalism (currently adopted for

mathematical convenience) will align perfectly with
human performance, but empirically exploring and evaluat-
ing such possibilities might prove a fruitful starting point.

A final element of Bayesian models that is traditionally
considered as outside the psychological theory but that
may have valuable process-level implications involves the
algorithms that are often used for approximating exact
Bayesian inference. Except in models that admit a
simple conjugate prior, deriving the exact posterior from
a Bayesian model is in most practical cases exceedingly
computationally intensive. Consequently, even the articles
that propose these models often resort to approximation
methods such as Markov-Chain Monte Carlo (MCMC;
Hastings 1970) or specializations such as Gibbs sampling
(Geman & Geman 1984) to derive approximate predic-
tions. To the extent that Bayesian models capture any
truth about the workings of the brain, the brain is faced
with the same estimation problems that confront Bayesian
modelers, so it too likely must use approximate methods
for inference and decision-making. Many of the algorithms
used in current Bayesian models correspond to important
recent advances in computer science and machine learn-
ing, but until their psychological predictions and plausi-
bility are addressed, they cannot be considered part of
cognitive theory. Therefore, instead of being relegated to
footnotes or appendices, these approximation algorithms
should be a focus of the research because this is where a
significant portion of the psychology lies. Recent work
investigating estimation algorithms as candidate psycho-
logical models (e.g., Daw & Courville 2007; Sanborn
et al. 2010a) represents a promising step in this direction.
An alternative line of work suggests that inference is
carried out by a set of simple heuristics that are adapted
to statistically different types of environments (Brighton &
Gigerenzer 2008; Gigerenzer & Todd 1999). Deciding
between these adaptive heuristics and the more complex
estimation algorithms mentioned above is an important
empirical question for the mechanistic grounding of
Bayesian psychological models.

A significant aspect of the appeal of Bayesian models is
that their assumptions are explicitly laid out in a clean and
interpretable mathematical language that, in principle,
affords the researcher a transparent view of their
operation. This is in contrast to other computational
approaches (e.g., connectionism), in which it can be diffi-
cult to separate theoretically important assumptions from
implementational details. Unfortunately, as we have
argued here, this is not generally the case in practice.
Instead, unexamined yet potentially critical assumptions
are routinely built into the hypothesis sets, priors, and
estimation procedures. Treating these components of
Bayesian models as elements of the psychological theory
rather than as ancillary assumptions is an important prere-
quisite for realizing the transparency of the Bayesian
framework. In this sense, the shift from Bayesian Funda-
mentalism to Enlightenment is partly a shift of perspec-
tive, but it is one we believe could have a significant
impact on theoretical progress.

6.2. Integrating Bayesian analysis
with mechanistic-level models

Viewing Bayesian models as genuine psychological the-
ories in the ways outlined here also allows for potential

Jones & Love: Bayesian Fundamentalism or Enlightenment?

BEHAVIORAL AND BRAIN SCIENCES (2011) 34:4 185



integration between rational and mechanistic approaches.
The most accurate characterization of cognitive function-
ing is not likely to come from isolated considerations of
what is rational or what is a likely mechanism. More prom-
ising is to look for synergy between the two, in the form of
powerful rational principles that are well approximated by
efficient and robust mechanisms. Such an approach would
aid understanding not just of the principles behind the
mechanisms (which is the sole focus of Bayesian Funda-
mentalism), but also of how the mechanisms achieve and
approximate those principles and how constraints at both
levels combine to shape behavior (see Oaksford &
Chater [2010] for one thorough example). We stress that
we are not advocating that every model include a complete
theory at all levels of explanation. The claim is merely that
there must be contact between levels. We have argued this
point here for rational models, that they should be
informed by considerations of process and representation;
but the same holds for mechanistic models as well, that
they should be informed by consideration of the compu-
tational principles they carry out (Chater et al. 2003).

With reference to the problem of model fractionation
discussed earlier, one way to unite Bayesian models of
different phenomena is to consider their rational charac-
terizations in conjunction with mechanistic implemen-
tations of belief updating and knowledge representation,
with the parsimony-derived goal of explaining multiple
computational principles with a common set of processing
mechanisms. In this way the two levels of analysis serve to
constrain each other and to facilitate broader and more
integrated theories. From the perspective of theories as
metaphors, the rationality metaphor is unique in that is
has no physical target, which makes it compatible with
essentially any mechanistic metaphor and suggests that
synthesis between the two levels of explanation will often
be natural and straightforward (as compared to the chal-
lenge of integrating two distinct mechanistic architec-
tures). Daw et al. (2008) offer an excellent example of
this approach in the context of conditioning, by mapping
out the relationships between learning algorithms and
the rational principles they approximate, and by showing
how one can distinguish behavioral phenomena reflecting
rational principles from mechanistic signatures of the
approximation schemes.

Examples of work that integrates across levels of expla-
nation can also be found in computational neuroscience.
Although the focus is not on explaining behavior, models
in computational neuroscience relate abstract probabilistic
calculations to operations in mechanistic neural network
models (Denève 2008; Denève et al. 1999). Other work
directly relates and evaluates aspects of Bayesian models
to brain areas proposed to perform the computation
(Doll et al. 2009; Soltani & Wang 2010). For example,
Köver and Bao (2010) relate the prior in a Bayesian
model to the number of cells devoted to representing poss-
ible hypotheses. This work makes contact with all three of
Marr’s (1982) levels of analysis by making representational
commitments and relating these aspects of the Bayesian
model to brain regions.

An alternative to the view of mechanisms as approxi-
mations comes from the research of Gigerenzer and col-
leagues on adaptive heuristics (e.g., Gigerenzer & Todd
1999). Numerous studies have found that simple heuristics
can actually outperform more complex inference algorithms

in naturalistic prediction tasks. For example, with certain
datasets, linear regression can be outperformed in cross-
validation (i.e., transfer to new observations) by a simple
tallying heuristic that gives all predictors equal weight
(Czerlinski et al. 1999; Dawes & Corrigan 1974). Brighton
and Gigerenzer (2008) explain how the advantage of
simple heuristics is rooted in the bias-variance dilemma
from statistical estimation theory – specifically, that more
constrained inference algorithms can perform better on
small datasets because they are less prone to overfitting
(e.g., Geman et al. 1992). Although this conclusion has
been used to argue against computational-level theories of
rationality in favor of ecological rationality based on mech-
anisms adapted to specific environments (Gigerenzer &
Brighton 2009), we believe the two approaches are highly
compatible. The connection lies in the fact that any infer-
ence algorithm implicitly embodies a prior expectation
about the environment, corresponding to the limitations
in what patterns of data it can fit and hence the classes of
environments in which it will tend to succeed (cf. Wolpert
1996). For example, the tallying heuristic is most successful
in environments with little variation in true cue validities
and in cases where the validities cannot be precisely esti-
mated (Hogarth & Karelaia 2005). This suggests that tally-
ing should be matched or even outperformed by Bayesian
regression with a prior giving more probability to more
homogeneous regression weights. The point here is that
the ecological success of alternative algorithms (tallying vs.
traditional regression) can inform a rational analysis of the
task and hence lead to more accurate normative theories.
This sort of approach could alleviate the insufficient
environmental grounding and excessive flexibility of Baye-
sian models discussed in section 5. Formalizing the relation-
ship between algorithms and implicit priors – or between
statistical regularities in particular environments and algor-
ithms that embody those regularities – is therefore a poten-
tially powerful route to integrating mechanistic and rational
approaches to cognition.

Another perspective on the relationship between Baye-
sian and mechanistic accounts of cognition comes from the
recognition that, at its core, Bayes’ Rule is a model of the
decision process. This is consistent with (and partly jus-
tifies) the observation that most work in the Bayesian
Fundamentalist line avoids commitments regarding rep-
resentation. However, the thesis that inference and
decision-making are optimal is meaningful only in the
context of the knowledge (i.e., beliefs about the environ-
ment) with respect to which optimality is being defined.
In other words, a complete psychological theory must
address both how knowledge is acquired and represented
and how it is acted upon. As argued in section 4.1, ques-
tions of the structure of people’s models of their environ-
ments, and of how those models are learned, are better
addressed by traditional, mechanistic psychological
methods than by rational analysis. Taken together, these
observations suggest a natural synthesis in which psycho-
logical mechanisms are used to model the learner’s state
of knowledge, and rational analysis is used to predict
how that knowledge is used to determine behavior.

The line between knowledge and decision-making, or
representation and process, is of course not so well
defined as this simple proposal suggests, but the general
idea is that rational analysis can be performed not in the
environment but instead within a mechanistic model,
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thus taking into account whatever biases and assumptions
the mechanisms introduce. This approach allows the
modeler to postulate decision rules that are optimal with
respect to the representations and dynamics of the rest
of the model. The result is a way of enforcing “good
design” while still making use of what is known about
mental representations. It can improve a mechanistic
model by replacing what might otherwise be an arbitrary
decision rule with something principled, and it also
offers an improvement over rational analysis that starts
and ends with the environment and is not informed by
how information is actually represented. This approach
has been used successfully to explain, for example,
aspects of memory as optimal retrieval, given the nature
of the encoding (Shiffrin & Steyvers 1998); patterns of
short-term priming as optimal inference with unknown
sources of feature activation (Huber et al. 2001); and
sequential effects in speeded detection tasks as optimal
prediction with respect to a particular psychological rep-
resentation of binary sequences (Wilder et al. 2009). A
similar approach has also been applied at the neural
level, for example, to model activity of lateral intraparietal
(LIP) neurons as computing a Bayesian posterior from
activity of middle temporal (MT) cells (Beck et al. 2008).
One advantage of bringing rational analysis inside cogni-
tive or neural models is that it facilitates empirical com-
parison among multiple Bayesian models that make
different assumptions about knowledge representation
(e.g., Wilder et al. 2009). These lines of research illustrate
that the traditional identification of rational analysis with
computational-level theories is an artificial one, and that
rational analysis is in fact applicable at all levels of expla-
nation (Danks 2008).

A complementary benefit of moving rational analysis
inside psychological models is that the assumption of
optimal inference can allow the researcher to decide
among multiple candidate representations, through com-
parison to empirical data. The assumption of optimal
inference allows for more unambiguous testing of rep-
resentation, because representation becomes the only
unknown in the model. This approach has been used suc-
cessfully in the domain of category induction by Tenen-
baum et al. (2006). However, such conclusions depend
on a strong assumption of rational inference. The question
of rational versus biased or heuristic inference has been a
primary focus of much of the judgment and decision-
making literature for several decades, and there is a
large body of work arguing for the latter position (e.g.,
Tversky & Kahneman 1974). On the other hand, some of
these classic findings have been given rational reinterpre-
tations under new assumptions about the learner’s knowl-
edge and goals (e.g., Oaksford & Chater 1994). This
debate illustrates how the integration of rational and
mechanistic approaches brings probabilistic inference
under the purview of psychological models where it can
be more readily empirically tested.

Ultimately, transcending the distinction between
rational and mechanistic explanations should enable sig-
nificant advances of both and for cognitive science as a
whole. Much of how the brain operates reflects character-
istics of the environment to which it is adapted, and there-
fore an organism and its environment can be thought of as
a joint system, with behavior depending on aspects of both
subsystems. There is of course a fairly clear line between

organism and environment, but that line has no more epis-
temological significance than the distinctions between
different sources of explanation within either category.
In other words, the gap between an explanation rooted
in some aspect of the environment and one rooted in a
mechanism of neural or cognitive processing should not
be qualitatively wider than the gap between explanations
rooted in different brain regions, different processing
stages or modules, or uncertainty in one latent variable
versus another. The joint system of organism and environ-
ment is a complex one, with a large number of constituent
processes; and a given empirical phenomenon (of behav-
ior, brain activity, etc.) can potentially be ascribed to any
of them. Just as in other fields, the scientific challenge is
to determine which explanation is best in each case, and
for most interesting phenomena the answer will
most likely involve an interaction of multiple, disparate
causes.

7. Conclusions

The recent advances in Bayesian modeling of cognition
clearly warrant excitement. Nevertheless, many aspects
of current research practice act to severely limit the contri-
butions to psychological theory. This article traces these
concerns to a particular philosophy that we have labeled
Bayesian Fundamentalism, which is characterized by the
goal of explaining human behavior solely in terms of
optimal probabilistic inference, without recourse to mech-
anism. This philosophy is motivated by the thesis that,
once a given task is correctly characterized in terms of
environmental statistics and goals of the learner, human
behavior in that task will be found to be rational. As the
numerous citations throughout this article demonstrate,
Bayesian Fundamentalism constitutes a significant
portion (arguably the majority) of current research on
Bayesian modeling of cognition.

Establishing the utility of the Bayesian framework, and
the rational metaphor more generally, is an important
first step, and convincing arguments have been made
for this position (e.g., Oaksford & Chater 2007).
However, excessive focus on this meta-scientific issue
severely limits the scope and impact of the research.
Focusing on existence proofs distracts from the more
critical work of deciding among competing explanations
and identifying the critical assumptions behind models.
In the context of rational Bayesian modeling, existence
proofs hide the fact that there are generally many Baye-
sian models of any task, corresponding to different
assumptions about the learner’s goals and model of the
environment. Comparison among alternative models
would potentially reveal a great deal about what
people’s goals and mental models actually are. Such an
approach would also facilitate comparison to models
within other frameworks, by separating the critical
assumptions of any Bayesian model (e.g., those that
specify the learner’s generative model) from the contri-
bution of Bayes’ Rule itself. This separation should
ease recognition of the logical relationships between
assumptions of Bayesian models and of models cast
within other frameworks, so that theoretical develop-
ment is not duplicated and so that the core differences
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between competing theories can be identified and
tested.

The total focus on rational inference that characterizes
Bayesian Fundamentalism is especially unfortunate from
a psychological standpoint because the updating of
beliefs entailed by Bayes’ Rule is psychologically trivial,
amounting to nothing more than vote counting. Much
more interesting are other aspects of Bayesian models,
including the algorithms and approximations by which
inference is carried out, the representations on which
those algorithms operate (e.g., the parameters of conjugate
priors), and the structured beliefs (i.e., generative models)
that drive them. The Enlightened Bayesian view takes
these seriously as psychological constructs and evaluates
them according to theoretical merit rather than mathemat-
ical convenience. This important shift away from Bayesian
Fundamentalism opens up a rich base for psychological
theorizing, as well as contact with process-level modes of
inquiry.

It is interesting to note that economics, the field of study
with the richest history of rational modeling of behavior
and the domain in which rational theories might be
expected to be most accurate, has increasingly questioned
the value of rational models of human decision-making
(Krugman 2009). Economics is thus moving away from
purely rational models toward theories that take into
account psychological mechanisms and biases (Thaler &
Sunstein 2008). Therefore, it is surprising to observe a
segment of the psychological community moving in the
opposite direction. Bayesian modeling certainly has
much to contribute, but its potential impact will be
much greater if developed in a way that does not eliminate
the psychology from psychological models. We believe this
will be best achieved by treating Bayesian methods as a
complement to mechanistic approaches, rather than as
an alternative.
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NOTES
1. Formally, Eposterior equals the logarithm of the posterior

distribution, Eprior is the logarithm of the prior, and Edata(H) is
the logarithm of the likelihood of the data under hypothesis H.
The model’s prediction for the probability that hypothesis H is
correct, after data have been observed, is proportional to
exp[Eposterior(H)] (cf. Luce 1963).

2. Bayesian analysis has been used to interpret neural spike
recordings (e.g., Gold & Shadlen 2001), but this falls outside
Bayesian Fundamentalism, which is concerned only with behav-
ioral explanations of cognitive phenomena.

3. Note that we refer here to Bayesian models that address be-
havior, not those that solely aim to explain brain data without
linking to behavior, such as Mortimer et al.’s (2009) model of
axon wiring.
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Abstract: The target article provides important theoretical contributions
to psychology and Bayesian modeling. Despite the article’s excellent
points, we suggest that it succumbs to a few misconceptions about
evolutionary psychology (EP). These include a mischaracterization of
evolutionary psychology’s approach to optimality; failure to appreciate
the centrality of mechanism in EP; and an incorrect depiction of
hypothesis testing. An accurate characterization of EP offers more
promise for successful integration with Bayesian modeling.

Jones & Love (J&L) provide important theoretical contributions
to psychology and Bayesian modeling. Especially illuminating is
their discussion of whether Bayesian models are agnostic about
psychology, serving mainly as useful scientific and mathematical
tools, or instead make substantive claims about cognition.

Despite its many strengths, the target article succumbs to
some common misconceptions about evolutionary psychology
(EP) (Confer et al. 2010). The first is an erroneous characteriz-
ation of EP’s approach to optimality and constraints. Although
the article acknowledges the importance of constraints in evol-
utionary theory, it lapses into problematic statements such as
“evolutionary pressures tune a species’ genetic code such that
the observed phenotype gives rise to optimal behaviors” (sect. 5,
para. 3). J&L suggest that evolutionary psychologists reinterpret
behavioral phenomena as “optimal” by engaging in a post hoc
adjustment of their view of the relevant selection pressures oper-
ating in ancestral environments.

These statements imply that a key goal of EP is to look for
optimality in human behavior and psychology. On the contrary,
the existence of optimized mechanisms is rejected by evolution-
ary psychologists, as this passage from Buss et al. (1998)
illustrates:

[T]ime lags, local optima, lack of genetic variation, costs, and limits
imposed by adaptive coordination with other mechanisms all constitute
major constraints on the design of adaptations. . . . Adaptations are not
optimally designed mechanisms. They are . . . jerry-rigged, meliorative
solutions to adaptive problems . . ., constrained in their quality and
design by a variety of historical and current forces. (Buss et al. 1998,
p. 539)

J&L argue that “it is not [simply] any function that is optimized
by natural selection, but only those functions that are relevant to
fitness” (sect. 5, para. 4). We agree with the implication that psy-
chologists must consider the fitness-relevance of the mechanisms
they choose to investigate. Identifying adaptive function is
central. Nonetheless, natural selection is better described as a
“meliorizing” force, not an optimizing force (see Dawkins 1982,
pp. 45–46) – and thus even psychological mechanisms with
direct relevance to fitness are not optimized. As J&L correctly
note elsewhere, selection does not favor the best design in
some global engineering sense, but rather features that are
better than competing alternatives extant in the population at
the time of selection, within existing constraints (Buss et al.
1998; Dawkins 1982).

Despite occasional problems with the target article’s depiction
of EP’s views on optimality, we fully agree with J&L that (a)
adaptationist accounts place significant constraints on expla-
nation, (b) evolution proceeds by “survival of the best current
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design, not survival of the globally optimal design” (sect. 5.3,
para. 3), (c) human cognition is not optimally designed, and (d)
the “rational program” in Bayesian modeling has an overly
narrow focus on optimally functioning adaptations.

J&L present a partly accurate and partly inaccurate character-
ization of the relevance of mechanism in evolutionary
approaches. They correctly acknowledge the importance of elu-
cidating the specific mechanistic workings of adaptations.
However, the target article compares EP to Bayesian Funda-
mentalism and Behaviorism by claiming that all three approaches
eschew the investigation of mechanism. We disagree with this
latter assessment.

In our view, it is difficult or impossible to study function
without investigating form or mechanism. The central logic of
adaptationism makes the inextricable link between form (or
mechanism) and function clear: An adaptation must necessarily
be characterized by a good fit between form and function –
between an adaptation and the adaptive problem it was
“designed” to solve .The key point is that evolutionary approaches
to psychology necessarily involve the joint investigation of mech-
anism and function. Evolutionary psychology generates hypoth-
eses about “design features,” or particular mechanistic
attributes, that adaptations either must have or might have in
order to successfully solve the adaptive problems that they
evolved to solve. Indeed, mechanism is one of Tinbergen’s
(1963) four explanatory levels – mechanism, ontogeny, function,
and phylogeny. Ideally, all should be analyzed in order to achieve
a complete understanding of any behavior or psychological
phenomenon, and all are central to core aims of EP. Of course,
not every scientist explores all four questions; every empirical
study has delimited aims; and the field is certainly far from a com-
plete understanding of all of the design features of any mechan-
ism, whether it be the human visual system or incest-avoidance
adaptations.

As a single example of mechanistic EP research, adaptationist
analyses of fear have uncovered social inputs that elicit the
emotion, nonsocial inputs that trigger the emotion, the adaptive
behavioral output designed to solve the problem, the perceptual
processes involved in detecting threats and reacting fearfully,
the developmental trajectory of human fears, and the physio-
logical and endocrinological mechanisms driving the fear
response (see, e.g., Bracha 2004; Buss 2011; Neuhoff 2001;
Öhman et al. 2001). Analogous progress has been made in
understanding other evolved mechanisms, such as mating adap-
tations, perceptual biases, and adaptive social inference biases
(Buss 2011).

Most human adaptations are only just beginning to be subjected
to scientific investigation, and many mechanistic details have cer-
tainly not yet been elucidated. EP could profitably increase its
use of formal mechanistic modeling in this endeavor. Fusing the
strengths of mathematical and computational modelers with
those of evolutionary psychologists would enrich both fields.

Finally, the target article depicts EP as occasionally falling into
“backward-looking” hypotheses (sect. 5.2, para. 3) or engaging in
“just so” storytelling (sect. 5.2, para. 1; Gould & Lewontin 1979).
By this, the authors mean that evolutionary psychologists some-
times note a behavior or psychological mechanism, and then con-
struct a conceivable function for it and simply stop there. We
agree with J&L that this practice would be highly problematic
if it were the end point of scientific analysis.

Fortunately, leading work in EP proceeds using both the
forward method in science (theory leads directly to hypothesis,
which then leads to empirical predictions, which are then
tested) as well as the backward method (observed phenomenon
leads to hypothesis, which in turn leads to novel empirical pre-
dictions, which are then tested) (see Buss 2011; Tooby & Cos-
mides 1992). Much of evolutionary psychology uses the forward
method, and here it is not even possible to level the “just-so
story” criticism. When evolutionary psychologists employ the
backward method, they typically avoid the problem by taking

the additional necessary step of deriving novel and previously
untested predictions from the hypothesis (for numerous
examples, see Buss 2011). We concur with the implication
that there are better and poorer practitioners of the rigors of
science, and that all should be held to the highest standards
for more rapid progress.

In sum, we view an accurately characterized modern
evolutionary psychology as largely avoiding the conceptual
pitfalls J&L note, and we look forward to a richer and more
successful integration of Bayesian modeling and evolutionary
psychology.
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Abstract: I extend Jones & Love’s (J&L’s) critique of Bayesian models
and evaluate the conceptual foundations on which they are built.
I argue that: (1) the “Bayesian” part of Bayesian models is scientifically
trivial; (2) “computational level” theory is a fiction that arises from an
inappropriate programming metaphor; and (3) the real scientific
problems lie outside Bayesian theorizing.

The Bayesian framework asserts that problems of perception,
action, and cognition can be understood as (approximations to)
ideal rational inference. Bayes’ rule is a direct consequence of
the definition of conditional probability, and is reasonably cap-
tured as the simple “vote counting” procedure outlined in the
target article by Jones & Love (J&L). This is clearly not where
the interesting science lies. The real scientific problems for a
Bayesian analysis arise in defining the appropriate hypothesis
space (the “candidates” for whom votes will be cast), and a prin-
cipled means of assigning priors, likelihoods, and cost functions
that will, when multiplied, determine the distribution of votes
(and the ultimate winner[s]).

Bayesian models of cognition begin by asserting that brains are
devices that compute, and that it is possible to dissociate what
they compute from how they compute. David Marr’s (1982)
now infamous dissociation of the computational, algorithmic,
and implementation “levels of analysis” is usually invoked to
justify this belief, and inspires attempts to “reverse engineer”
the mind (Tenenbaum et al. 2011). It is no coincidence that
Marr’s levels resemble the stages of someone writing a compu-
ter program, which are granted some (unspecified) form of
ontological status: A problem is defined, code is written to
solve it, and a device is employed to run the code. But unlike
the computational devices fashioned by man, the brain, like
other bodily organs, emerged as the consequence of natural
processes of self-organization; the complexity of its structure
and function was not prescribed in some top-down manner as
solutions to pre-specified computational problem(s). The only
“force” available to construct something ideal is natural selec-
tion, which can only select the best option from whatever is
available, even if that is nothing more than a collection of
hacks. As for the “computational level” theory, it is far from
evident that brains can be accurately characterized as perform-
ing computations any more than one can claim that planets
compute their orbits, or rocks rolling down hills compute
their trajectory. Our formal models are the language that we
use to try to capture the causal entailments of the natural
world with the inferential entailments embodied in the
formal language of mathematics (Rosen 1991). The assertion
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that a computational level of analysis exists is merely an asser-
tion grounded on the latest technological metaphor. If this
assertion is false, then models that rely on its veracity (like
Bayesian models of cognition) are also false.

But even if we accept Marr’s levels of analysis, we have
gained very little theoretical leverage into how to proceed.
We must now guess what the computational problems are
that brains solve. There is no principled Bayesian method to
make these guesses, and this is not where the guessing game
ends. Once a computational problem is identified, we must
guess a hypothesis space, priors, likelihoods, and cost functions
that, when multiplied together, supply the problem’s solution.
The majority of this guess-work is shaped by the very data that
cognitive models are attempting to explain: The “richly struc-
tured representations” of cognition often seem like little
more than a re-description of the structure in the data,
recast as post hoc priors and likelihoods that now pose as
theory.

Similar problems arise in Bayesian models of perception,
although some of the guess-work can be constrained by genera-
tive models of the input and the statistics of natural environ-
ments. The Bayesian approach has been cast into “natural
systems analysis” (Geisler & Ringach 2009), which asserts that
perceptual systems should be analyzed by specifying the
natural tasks an animal performs and the information used to
perform them. The specification of “natural tasks” plays essen-
tially the same role as Marr’s computational level analysis.
Once a task is defined, an ideal observer is constructed: a
hypothetical device that performs a task optimally given the
“available information.” It is difficult to argue with the logic of
this approach, as it is equivalent to stating that we should study
the perceptual abilities that were responsible for our evolutionary
survival. But how do we discriminate between the natural tasks
that were the product of natural selection from those that
merely came along for the ride? This problem is not unique to
the analysis of psychological systems; it is a general problem of
evolutionary biology (i.e., distinguishing products of adaptive
selection from “spandrels” – by-products of the selective adap-
tation of some other trait).

It is unclear how natural systems analysis provides any theor-
etical leverage into any of these deep problems (i.e., how the
modifier “natural” constrains “systems analysis”). We must
first guess what counts as the “natural tasks” to determine
the appropriate objects of study. We then guess what infor-
mation is available (and used) to perform that task ideally.
The ideal observers so articulated are only “ideal” to the
extent that we have correctly identified both the available
information and a task that the perceptual system actually per-
forms. We then construct an experiment to compare biological
performance with ideal performance. And although natural
systems analysis begins by considering properties of natural
scenes, the majority of the experimental paradigms that
assess natural tasks are largely indistinguishable from the
larger body of perceptual research. In order to achieve ade-
quate experimental control, most of the complexity of natural
scenes has been abstracted away, and we are left with displays
and methods that could have (and typically were) invented
without any explicit reference to, or consideration of, Bayes
theorem.

In the end, we are left trying to understand what animals do
and how they do it. The hard problems remain inaccessible to
the tools of Bayesian analysis, which merely provide a means to
select an answer once the hard problem of specifying the list of
possible answers has been solved (or at least prescribed). Baye-
sian analysis assures us that there is some way to conceive of
our perceptual, cognitive, and motor abilities as “rational” or
“ideal.” Like J&L, I fail to experience any insight in this reassur-
ance. And I am left wondering how to reconcile such views with
the seemingly infinite amount of irrationality I encounter in my
daily life.

Maybe this old dinosaur isn’t extinct:
What does Bayesian modeling add to
associationism?
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Abstract: We agree with Jones & Love (J&L) that much of Bayesian
modeling has taken a fundamentalist approach to cognition; but we do
not believe in the potential of Bayesianism to provide insights into
psychological processes. We discuss the advantages of associative
explanations over Bayesian approaches to causal induction, and argue
that Bayesian models have added little to our understanding of human
causal reasoning.

Jones & Love (J&L) reveal the shortcomings of current Bayesian
approaches to psychological processes. We agree with the
authors on this but believe they still show too much faith in the
potential of the Bayesian approach as an alternative to connec-
tionist modeling. We illustrate the problems with a discussion
of research on human causal induction. Bayesian fundamental-
ism has taken firm hold in this field; however, there is also a tra-
dition of associative analysis, allowing us to consider the added
value of Bayesianism.

Causal reasoning in naturalistic environments quickly becomes
a mathematically complex problem requiring important auxiliary
processes beyond the math. According to a Bayesian analysis,
people start by representing and selecting from multiple causal
structures. For example, three events A, B, and C can be
described by several classes of causal model, including a causal
chain in which A causes B which then causes C (A! B! C)
and a common cause model in which A causes B and C
(C A! B). Observations are used to decide which is most
likely. A simple Bayesian analysis has problems because some
of the models can be Bayesian equivalents. For example, a deter-
ministic chain model (A! B! C) and a deterministic common
cause model (C A! B) produce the same empirical prob-
abilities. Either all three events are present on a trial or none are.

One way to reduce this ambiguity is to do an intervention.
Removing the effect of B enables one to discriminate between
chain and common cause models. With a chain (A! B! C),
C will no longer occur, but in a common cause model
(C A! B), C will occur. People can decide between
models by using interventions (Steyvers et al. 2003). However,
the critical feature of this Bayesian modeling is that the Bayesian
component does not do the crucial intervention but simply
assesses the result of the intervention. A supervisor or other
mechanism decides which intervention to make (Hagmayer
et al. 2007; Steyvers et al. 2003). It is this decision process that
is outside the Bayesian frame that is critical. The dependencies
in the causal graphs may be generated by Bayesian processes,
but the Bayesian analysis does not do the psychological work
that solves the problem. As J&L suggest, it merely does the
complex counting. Associative or connectionist models can also
do this work. For example, a traditional associative net has
nodes and connections of varying strengths between them (e.g.,
Baker et al. 1996). And it is common practice for scientists to
remove nodes in order to discover what the associative nets
have learned (e.g., Cowell et al. 2006; Harm & Seidenberg
1999; Plaut 1995). If the supervisor were to perform similar
actions, this would be an associative analogue to graph surgery.
An associative analysis is not only very similar to the Bayesian
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computation, it also has some advantages which we discuss.
Therefore, it is disingenuous to claim that this type of research
in causal induction arises from or differentially supports a Baye-
sian perspective.

The second way to disambiguate the causal models, temporal
precedence, has been the object of much associative analysis
(e.g., Pavlov 1927). The causal arrows in the models can be
replaced with “leads to” and, if the observer can discriminate
order, they could easily discriminate the common cause, A leads
to B and C, from the chain, A leads to B that leads to C models.
Bayesian fundamentalists researching causal induction (e.g.,
Lagnado & Sloman 2006) have, indeed, shown that with temporal
information people can discriminate the models. However, the
timing information does not arise directly from Bayesian compu-
tations. Again it is the supervisor that disambiguates the data by
using timing. However, learning orders emerges easily from a con-
nectionist perspective. Associative nets, like neuronal processes,
have activations that decay with time. In (A! B! C), when C
finally comes along, A activation will have decayed more than B
activation, so a stronger link between B and C will form. Baetu
and Baker (2009) have reported a series of experiments in which
they have studied how people form causal chains from experience
with the individual links (generative and preventative). People are
good at assembling these independently learned links into chains.
But, most important, a modification of a simple associative model
(the autoassociator; McClelland & Rumelhart 1988) generates rep-
resentations of causal structure, and predicts participants’ behavior.

Finally, the associative structures have a certain face validity for
psychological processes that the Bayesian frames do not. In associ-
ative terms, causal chains are represented as associative strengths
and not likelihood ratios. Order and timing can flow naturally from
them. They represent causes and effects of different magnitudes,
and not just binary (absent/present) events. Causes and activations
may be weak or strong, and not just present or absent.

What does this say about J&L’s thesis? First, we agree that
Bayesianism must progress beyond fundamentalism. Indeed,
much of the research concerning the supervisor can lead the
unwary believer to the unwarranted conclusion that this work
discriminates Bayesian computations from others. Second, J&L
argue that the Bayesian analysis can prosper at all levels. In our
rather simple case, it certainly does not account for the supervi-
sor. It is not clear how it could in a principled way. Third, they
argue that Bayesian analyses should become closely linked to
psychological mechanism, and we agree; but we argue that
associative structure may already be there. For instance, we are
now closer to understanding how a prediction-error algorithm
(e.g., Rescorla & Wagner 1972) might be implemented in the
brain (Kim et al. 1998; Waelti et al. 2001).

In conclusion, we agree with J&L that Agnostic Bayesian nets
offer a powerful method for artificial intelligence and that, if ela-
borated, can learn about or represent any finite data set – but so
could an associative net. However, the question for psychological
process is one of parsimony and mechanistic plausibility, and we
are not convinced that J&L have demonstrated this contribution.
We would be more convinced if they had described a single
instance where a Bayesian analysis produced a realistic psycho-
logical mechanism or empirical result.

Integrating Bayesian analysis and mechanistic
theories in grounded cognition
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Abstract: Grounded cognition offers a natural approach for integrating
Bayesian accounts of optimality with mechanistic accounts of cognition,
the brain, the body, the physical environment, and the social
environment. The constructs of simulator and situated conceptualization
illustrate how Bayesian priors and likelihoods arise naturally in grounded
mechanisms to predict and control situated action.

In the spirit of Bayesian Enlightenment, as suggested by Jones &
Love (J&L), grounded cognition offers architectural mechanisms
that naturally afford Bayesian analysis. In particular, the con-
structs of simulator and situated conceptualization illustrate the
potential for integrating explanations across Marr’s (1982) com-
putational, algorithmic, and implementation levels. Many other
grounded constructs also undoubtedly offer similar potential.

In perceptual symbol systems, a simulator is a dynamical system
distributed across the modalities that process a category’s proper-
ties, aggregating information about diverse instances, comparable
to a concept in traditional theories (Barsalou 1999; 2003a). The
beer simulator, for example, aggregates information about how
beer looks, smells, and tastes, how it is consumed, how we feel
afterwards, and so on. If someone experiences a wide variety of
beers (e.g., American, Belgian, English, German, Czech, Indian,
Thai, etc.), the beer simulator captures diverse multi-modal
states about the category (modeled naturally with neural net archi-
tectures; e.g., Pezzulo et al. 2011). On a given occasion, the beer
simulator dynamically produces one of many specific beer simu-
lations, from an infinite set possible. A natural way of thinking
about the space of possible simulations within a simulator is as a
space of Bayesian priors, with some simulations being more
likely than others. Furthermore, the strength of a given prior can
be assessed empirically (rather than simply assumed), reflecting
well-established and readily measured factors, including how fre-
quently and recently category instances have been experienced,
how ideal or preferred they are, their similarity to other instances,
and so forth (Barsalou 1985; 1987).

In grounded approaches to the conceptual system, a situated
conceptualization is a situation-relevant simulation from a simu-
lator embedded in the representation of a likely background situ-
ation (Barsalou 2003b; 2008c; Yeh & Barsalou 2006). One
situated conceptualizations of chair, for example, represents a
chair on a jet, embedded in a jet setting, accompanied by relevant
actions and mental states. A natural way of thinking about a situ-
ated conceptualization is as representational structure that cap-
tures and produces Bayesian likelihoods. Entering a jet setting,
for example, may activate the situated conceptualization for jet
chairs, producing the expectancy that this specific type of chair
will be experienced shortly. Similarly, seeing a jet chair activates
expectancies about how to interact with it, how it will feel to
operate, and so on. Again, the statistical structure of situated con-
ceptualizations can be assessed empirically, through objective
assessments of the environment, subjective estimates of co-
occurrence, et cetera. In general, much evidence demonstrates
that situated conceptualizations produce part-whole inferences
to support diverse forms of reasoning (e.g., Barsalou et al.
2003; 2005; Wilson-Mendenhall et al. 2011).

Together, simulators and situated conceptualizations naturally
produce Bayesian inferences. Before entering a building for the
first time, priors associated with the chair simulator produce situ-
ation-independent inferences about chairs likely to be encountered
(e.g., kitchen chairs, easy chairs, office chairs), whereas likelihoods
emerging from relevant situated conceptualizations produce infer-
ences about likely chairs to be found in this particular context (e.g.,
living rooms of Buddhist friends). From the perspective of
grounded cognition, priors and likelihoods are combined to
produce simulations that prepare agents for what is likely to exist
in the world, for how to act on the world, and for the mental
states likely to result (Barsalou 2009; Barsalou et al. 2007).
Because such simulations utilize the modalities for perception,
action, and internal states, representations in these modalities
become primed, thereby facilitating expected interaction with
the environment. Although architectures remain to be developed
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that combine these sources of Bayesian information to produce
simulations, neural net architectures that reactivate previously
experienced states have much potential for doing so.

Because simulators and situated conceptualizations occur in
nonhumans, they offer a natural account of conceptual proces-
sing across species (Barsalou 2005). If so, the kind of Bayesian
analysis just described applies comparatively, perhaps via some-
what common forms of optimality arising continuously across
evolution. Where humans are likely to differ is in the linguistic
control of this architecture, with words activating simulators,
and larger linguistic structures specifying situated conceptualiz-
ations compositionally and productively (Barsalou 1999; 2008b).

Bayesian analysis can also be applied to linguistic forms, simi-
larly to how it can be applied to simulators and situated concep-
tualizations. On activating a word, the probability that other
words become active reflects a distribution of priors over these
words, constrained by likelihoods, given other words in the
context. As research shows increasingly, the statistical structure
of linguistic forms mirrors, to some extent, the structure of con-
ceptual knowledge grounded in the modalities (e.g., Andrews
et al. 2009; Barsalou et al. 2008; Louwerse & Connell 2011).
Of interest is whether similar versus different factors optimize
the retrieval of linguistic forms and conceptual knowledge, and
what sorts of factors optimize their interaction.

Finally, the grounded perspective assumes that cognition
relies inherently on the body, the physical environment, and
the social environment, not just on classic cognitive mechanisms
(Barsalou 2008a). Because cognition does not occur indepen-
dently of these other systems, characterizing their structure is
essential, analogous to the importance of characterizing the phys-
ical environment in Bayesian analysis.

For all these reasons, grounded cognition offers a natural
approach for practicing and achieving Bayesian Enlightenment.
As cognition emerges from bodily and neural mechanisms
through interactions with physical and social environments, numer-
ous forms of optimization undoubtedly occur at many levels. Fully
understanding these optimizations seems difficult – not to mention
unsatisfying – unless all relevant levels of analysis are taken into
account. Indeed, this is the epitome of cognitive science.

Mechanistic curiosity will not kill
the Bayesian cat
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Abstract: Jones & Love (J&L) suggest that Bayesian approaches to the
explanation of human behavior should be constrained by mechanistic
theories. We argue that their proposal misconstrues the relation
between process models, such as the Bayesian model, and mechanisms.
While mechanistic theories can answer specific issues that arise from
the study of processes, one cannot expect them to provide constraints
in general.

Jones & Love (J&L) argue that Bayesian approaches to human
behavior should attend more closely to cognitive and neural
mechanisms. Because mechanisms play such an important role
in their target article, it is important to get a clear idea of what
mechanisms are and what they are good for. J&L unfortunately

do not clarify the term. They get closest when, in section 5.1,
they mention the “notion of mechanism (i.e., process or represen-
tation)” (para. 3, emphasis J&L’s). This treatment is, in our view,
less accurate than would be needed to support the strong claims
the target article makes with regard to the status of Bayesian
approaches to cognition. When the concepts of mechanism and
process are fleshed out, these claims might well turn out to be
untenable.

Roughly, processes and mechanisms relate as follows. A
process concerns the change of a system over time. The easiest
way to think about this is as a path through a set of possible
states the system can be in. A process model is a description of
this path, detailing how each new state (or its probability)
depends on its previous state(s). In the behavioral sciences,
such a model can often be represented by a flowchart. A mechan-
ism, by contrast, is not a process but a system. It typically has
parts that work together to implement an input-output relation.
For instance, smoking (input) robustly produces lung cancer
(output), through a causal mechanism (smoke brings tar into
the lungs which leads to mutations). A mechanistic model is a rep-
resentation of the way the parts of the system influence one
another. Typically, this is represented as a directed graph or a
circuit diagram. Mechanisms are closely tied to the notion of
function, because they are often studied and discovered by pur-
suing questions of the “how does this work?” variety (e.g., “how
does smoke cause cancer?”).

Now, a Bayesian model is a process model, not a mechanistic
model. This is not, as J&L believe, because “the Bayesian meta-
phor is tied to a mathematical ideal and thus eschews mechanism
altogether” (sect. 2.2, para. 3), but simply because it describes
how a rational agent moves through an abstract state-space of
beliefs (probabilities of hypotheses) when confronted with evi-
dence (data): all the model says is how a rational agent is to
move to new belief state at tþ 1, given the prior belief state
and evidence available at time t. This has nothing to do with
the fact that the model is mathematically formalized. Mechanistic
and causal models have mathematical formalizations just as well
(e.g., see Pearl 2000). The Bayesian model is simply not a
mechanistic model because it is a process model. To argue that
the Bayesian model fails to capture mechanisms is much like
arguing against relativity theory because it provides no mechan-
istic detail on how clocks slow down when moved.

Clearly there have to be mechanisms that allow the belief-
updating process to run, and these mechanisms are likely to
reside in our brain. One may profitably study these mechanisms
and even provide support for Bayesian models with that. A good
question, for instance, that may receive a mechanistic answer is,
“How do people implement belief updating?” (Ma et al. 2006).
Note that, by a suitable choice of variables and probabilistic
relations, any sequence of belief states can be viewed as resulting
from a Bayesian update (cf. Albert 2001). But say that we have
independently motivated our starting points and found a convin-
cing fit with the behavioral data of the belief dynamics (e.g.,
Brown et al. 2009). J&L then seem to suggest how this model
might be given a mechanistic underpinning when they say that
“belief updating of Bayes’ Rule [amounts] to nothing more
than vote counting” (sect. 7, para. 3). To us, the vote-counting
idea seems just about right, since vote counting is about all that
neurons can do if they are supposed to be ultimately implement-
ing the process. We would add that mechanisms might also
support the Bayesian account by providing independent motiv-
ations for choosing the variables and relations that make up the
model.

Another good question is, “Why do people deviate from optim-
ality in circumstance X?” The Bayesian model cannot explain
such deviations directly, since it presupposes optimality.
However, without a clear definition of optimality, as given by
the Bayesian model, it would be impossible to detect or define
such deviations in the first place: Without the presence of ration-
ality, the concept of bounded rationality cannot exist. What’s
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more, suboptimal behavior can be elucidated by giving it the
semblance of optimality within a Bayesian model. Those
models then suggest what potentially irrational assumptions
real agents make; the Bayesian models of reasoning behavior
(Oaksford & Chater 2007) are a case in point.

J&L are not satisfied by this type of mechanistic support for
Bayesian models; they argue that mechanistic theories should
constrain the Bayesian model. However, it is unclear why
exactly we should believe this. Surely, it does not matter for
the empirical adequacy of the Bayesian process models
whether peoples’ beliefs are physically realized as activation net-
works in their frontal lobe, as global properties of their brain
states, or as bursts of currents running in their big left toe.
What matters is that the behavioral data are fitted within an inde-
pendently motivated and predictively accurate model. In fact, if it
turned out that dualism were correct after all, and belief revision
actually went on in Cartesian mental stuff, that would not hurt
the Bayesian analysis one bit – as long as the mental stuff
updated its beliefs properly. Thus, the relation between Bayesian
explanation and mechanistic accounts is asymmetric: While the
finding that there is a mechanistic realization of Bayesian belief
revision supports the Bayesian view, not finding such a mechan-
istic realization does not refute the theory. The only facts that can
refute the Bayesian explanation are empirical facts about human
behavior.

More varieties of Bayesian theories, but no
enlightenment
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Abstract: We argue that Bayesian models are best categorized as
methodological or theoretical. That is, models are used as tools to
constrain theories, with no commitment to the processes that mediate
cognition, or models are intended to approximate the underlying
algorithmic solutions. We argue that both approaches are flawed, and
that the Enlightened Bayesian approach is unlikely to help.

We agree with many points raised by Jones & Love (J&L) in the
target article, but do not think that their taxonomy captures the
most important division between different Bayesian approaches;
and we question their optimism regarding the promise of the
Enlightened Bayesian approach.

In our view, the critical distinction between Bayesian models is
whether they are being used as a tool or a theory, what we have
called the Methodological and Theoretical Bayesian approaches,
respectively (Bowers & Davis, submitted). According to the
Methodological approach, Bayesian models are thought to
provide a measure of optimal performance that serves as a bench-
mark against which to compare actual performance. Researchers
adopting this perspective highlight how often human perform-
ance is near optimal, and such findings are held to be useful
for constraining a theory. (Whatever algorithm the mind uses,
it needs to support behaviour that approximates optimal per-
formance.) But there is no commitment to the claim that the
algorithms that support perception, cognition, and behaviour
approximate Bayesian computations.

By contrast, according to the Theoretical approach, the mind is
claimed to carry out (or closely approximate) Bayesian analyses at
the algorithmic level; this perspective can be contrasted with the

view that the mind is a rag-bag of heuristics. For example, when
describing the near-optimal performance of participants in
making predictions about uncertain events, Griffiths and Tenen-
baum (2006) write: “These results are inconsistent with claims
that cognitive judgments are based on non-Bayesian heuristics”
(p. 770).

Unfortunately, it is not always clear whether theorists are
adopting the Methodological or the Theoretical approach, and
at times, the same theorists endorse the different approaches in
different contexts. Nevertheless, this is the key distinction that
needs to be appreciated in order to understand what claims are
being advanced, as well as to evaluate theories. That is, if Baye-
sian models are used as a tool to constrain theories, then the
key question is whether this tool provides constraints above
and beyond previous methods. By contrast, if the claim is that
performance is supported by Bayesian-like algorithms, then it
is necessary to show that Bayesian theories are more successful
than non-Bayesian theories.

In our view there are two main problems with the Methodo-
logical Bayesian approach. First, measures of optimality are
often compromised by the fact Bayesian models are frequently
constrained by performance. For instance, Weiss et al. (2002)
developed a Bayesian model of motion perception that accounts
for an illusion of speed: Objects appear to move more slowly
under low-contrast conditions. In order to accommodate these
findings, Weiss et al. assumed that objects tend to move slowly
in the world, and this prior plays a more important role under
poor viewing conditions. One problem with this account,
however, is that there are other conditions under which objects
appear to move more quickly than they really are (Thompson
et al. 2006). Stocker and Simoncelli’s (2006) response to this
problem is to note that their Bayesian theory of speed perception
could account for the latter phenomenon as well:

[I]f our data were to show increases in perceived speed for low-contrast
high-speed stimuli, the Bayesian model described here would be able to
fit these behaviors with a prior that increases at high speeds. (Stocker &
Simoncelli 2006, p. 583)

The modification of Bayesian models in response to the data is
widespread, and this renders the models more as descriptions
of behaviour than as tools with which to measure optimality.

Second, even if a Bayesian model provides a good measure of
optimal performance, it is not clear how the tool contributes to
constraining theories. Under these conditions, a model can be
supported or rejected because it does or does not match
optimal performance, or more simply, a model can be supported
or rejected because it does or does not capture human perform-
ance. The match or mismatch to data is sufficient to evaluate the
model – the extra step of comparing to optimal performance is
superfluous.

With regard to the Theoretical Bayesian approach, the key
question is whether a Bayesian model does a better job in
accounting for behaviour compared to non-Bayesian alternatives.
However, this is rarely considered. Instead, proponents of this
approach take the successful predictions of a Bayesian model
as support for their approach, and often ignore the fact that
non-Bayesian theories might account for the data just as well.
We are not aware of any psychological data that better fit a Baye-
sian as compared to a non-Bayesian alternative.

What about the promise of the Bayesian Enlightenment
approach? On our reading, this perspective encompasses both
the theories that we would call Methodological (e.g., the adaptive
heuristic approach of Gigerenzer), and the theories that we
would call Theoretical (e.g., demonstrations that Bayesian com-
putations can be implemented in neural wetware are considered
Enlightened). Thus, the above criticisms apply to the Bayesian
Enlightenment approach as well.

With regard to Enlightened theories that take the form of
heuristics, it is not clear that Bayesian models are providing
any constraints. For example, we are not aware of any instance
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in which Gigerenzer and colleagues used a Bayesian model in
order to constrain their heuristic solution, and we are not sure
how in practice this could help in the future. The underlying pro-
cesses of Bayesian models and heuristics are as different as could
be, and unless there are cases in which a Bayesian model pro-
vides important constraints on heuristic theories above and
beyond the data, we do not see the point.

With regard to Enlightened models of neural computation,
there is no evidence that neurons actually compute in a Baye-
sian manner. Almost all the evidence taken to support this
view is behavioural, with the computational neuroscience
largely devoted to providing existence proofs that Bayesian
computations in brain are possible. Accordingly, alternative
computational solutions might equally account for the relevant
data. More generally, J&L argue that an Enlightened Bayesian
model looks for optimal solutions, given a set of representations
and processes. However, we are unclear how this approach
adds to the more traditional approach to science, namely, eval-
uating how well a specific implemented model accounts for
performance.

The imaginary fundamentalists: The
unshocking truth about Bayesian cognitive
science
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Abstract: If Bayesian Fundamentalism existed, Jones & Love’s (J&L’s)
arguments would provide a necessary corrective. But it does not.
Bayesian cognitive science is deeply concerned with characterizing
algorithms and representations, and, ultimately, implementations in
neural circuits; it pays close attention to environmental structure and
the constraints of behavioral data, when available; and it rigorously
compares multiple models, both within and across papers. J&L’s
recommendation of Bayesian Enlightenment corresponds to past,
present, and, we hope, future practice in Bayesian cognitive science.

The Bayesian Fundamentalist, as described by Jones & Love
(J&L), is an alarming figure. Driven by an unshakeable assump-
tion that all and every aspect of cognition can be explained as
optimal, given the appropriate use of Bayes’ rule, the fearsome
fundamentalist casts aside questions about representation and
procesFs, pays scant attention to the environment, and is rela-
tively unconcerned with empirical data or model comparison;
the fundamentalist launches an assault on the mind, armed
only with complex mathematics and elaborate computational
models. J&L suggest that cognitive science should shun this
extreme and bizarre position, and instead embrace Bayesian

Enlightenment. The latter is a moderate doctrine, which sees
Bayesian computational explanation as one of a number of
mutually constraining levels of explanation of the mind and
brain, pays attention to representation and process and the struc-
ture of the environment, and compares explanatory models with
empirical data and each other.

Readers new to Bayesian cognitive science may find the argu-
ment persuasive. The curious doctrine of Bayesian Fundament-
alism is surely a “bad thing,” and Bayesian Enlightenment is
clearly preferable. Such readers will, while being grateful to
J&L for forewarning them against the perils and pitfalls of Baye-
sian Fundamentalism, also wonder how a viewpoint as radical
and peculiar as Bayesian Fundamentalism ever became estab-
lished in the first place.

The truth is that it didn’t. To our knowledge, Bayesian Funda-
mentalism is purely a construct of J&L’s imagination. There are
no Bayesian Fundamentalists and never have been. There is, to
be sure, a large literature on Bayesian cognitive science. Bayesian
Fundamentalists appear nowhere within it. This is where the
reader of J&L new to Bayesian cognitive science is liable to be
led astray.

We agree with J&L that Enlightened Bayesians are commend-
able; and that Fundamentalist Bayesians, if they existed, would
be deplorable. But Bayesian Enlightenment, rather than Baye-
sian Fundamentalism, is and has always been the norm in Baye-
sian cognitive science.

Our discussion has four parts. First, we clarify some technical
inaccuracies in J&L’s characterization of the Bayesian approach.
Second, we briefly note that Bayesian Fundamentalism differs
from the actual practice of cognitive science along a number of
dimensions. Third, we outline the importance and potential
explanatory power of Bayesian computational-level explanation.
Fourth, we suggest that one characteristic of the Bayesian
approach to cognitive science is its emphasis on a top-down,
function-first approach to psychological explanation.

1. What is Bayes? In the target article, J&L worry that Baye-
sian inference is conceptually trivial, although its consequences
may be complex. The same could be said of all mathematical
science: The axioms are always “trivial”; the theorems and impli-
cations are substantive, as are the possibilities for engineering
nontrivial systems using that mathematics as the base.. J&L
focus their attention on Bayes’ rule, but this is just the starting
point for the approach, not its core. The essence of Bayes is
the commitment to representing degrees of belief with the calcu-
lus of probability. By adopting appropriate representations of a
problem in terms of random variables and probabilistic depen-
dencies between them, probability theory and its decision-theor-
etic extensions offer a unifying framework for understanding all
aspects of cognition that can be properly understood as inference
under uncertainty: perception, learning, reasoning, language
comprehension and production, social cognition, action planning
and motor control, as well as innumerable real-world tasks that
require the integration of these capacities. The Bayesian frame-
work provides a principled approach to solving basic inductive
challenges that arise throughout cognition (Griffiths et al.
2008a; Tenenbaum et al. 2011), such as the problem of trading
off simplicity and fit to data in model evaluation, via the Bayesian
Occam’s razor (MacKay 2002) or the problem of developing
appropriate domain-specific inductive biases for constraining
learning and inference, via hierarchical Bayesian models
(Gelman et al. 2003).

Bayes’ rule is the most familiar and most concrete form in
which psychologists typically encounter Bayesian inference, so
it is often where Bayesian modelers start as well. But interpreted
literally as the form of a computational model – what we take
to be J&L’s target when they refer to Bayes’ rule as a “simple
vote-counting scheme” (sect. 3, para. 9) – the form of Bayes’
rule J&L employ applies to only the simplest tasks requiring an
agent to evaluate two or more mutually exclusive discrete hypoth-
eses posited to explain observed data. Some of the earliest
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Bayesian models of cognition did focus on these cases; starting
with the simplest and most familiar settings is often a good
research strategy. But most of cognition cannot be directly cast
in such a simple form, and this has been increasingly reflected
in Bayesian cognitive models over the last decade. Indeed, the
form of Bayes’ rule that J&L discuss hardly figures in many con-
temporary Bayesian cognitive models.

What does it mean in practice for a computational model of
cognition to be Bayesian, if not to literally implement Bayes’
rule as a mechanism of inference? Typically, it means to adopt
algorithms for generating hypotheses with high posterior prob-
abilities based on Monte Carlo sampling, or algorithms for esti-
mating the hypothesis with highest posterior probability (i.e.,
maximum a posteriori probability [MAP]) using local message-
passing schemes (MacKay 2002). The outputs of these algorithms
can be shown, under certain conditions, to give reasonable
approximations to fully Bayesian inference, but can scale up to
much larger and more complex problems than could be solved
by exhaustively scoring all possible hypotheses according to
Bayes’ rule (J&L’s “simple vote-counting scheme”). A little
further on we briefly discuss several examples of how these
approximate inference algorithms have been explored as
models of how Bayesian computations might be implemented
in the mind and brain.

2. Bayesian Fundamentalism versus Bayesian cognitive

science. J&L charge Bayesian Fundamentalists with a number
of failings. The practice of Bayesian cognitive science is largely
free of these, as we will see.

(i) J&L suggest in their Introduction that “[i]t is extremely rare
to find a comparison among alternative Bayesian models of the
same task to determine which is most consistent with empirical
data” (sect. 1, para. 6). Yet such comparisons are commonplace
(for a tiny sample, see Goodman et al. 2007; Griffiths & Tenen-
baum 2009; Kemp & Tenenbaum 2009; Oaksford & Chater
2003); Goo. Nonetheless, of course, Bayesian authors do some-
times press for a single model, often comparing against non-
Bayesian alternative accounts (e.g., Goodman et al. 2008b).
This is entirely in line with practice in other modeling
frameworks.

(ii) J&L are concerned that Bayesians downplay the structure
of the environment. This is a particularly surprising challenge
given that Anderson’s path-breaking Bayesian rational analyses
of cognition (e.g., Anderson 1990; 1991a; Oaksford & Chater
1998b) are explicitly based on assumptions about environmental
structure. Similarly, Bayesian approaches to vision essentially
involve careful analysis of the structure of the visual environ-
ment – indeed, this defines the “inverse problem” that the
visual system faces (e.g., Yuille & Kersten 2006); and Bayesian
models of reasoning are crucially dependent on environmental
assumptions, such as “rarity” (Oaksford & Chater 1994).
Finally, in the context of language acquisition, there has been
substantial theoretical and empirical progress in determining
how learning depends on details of the “linguistic environment,”
which determine the linguistic structures to be acquired (Chater
& Vitányi 2007; Foraker et al. 2009; Hsu & Chater 2010; Hsu
et al., in press; Perfors et al. 2010; 2011).

(iii) J&L claim (in sect. 4) that Bayesian Fundamentalism is
analogous to Behaviorism, because it “eschews mechanism”
(sect. 2.2, para. 3). But, as J&L note, Bayesian cognitive
science, qua cognitive science, is committed to computational
explanation; behaviorists believe that no such computations
exist, and further that there are no internal mental states over
which such computations might be defined. Assimilating such
diametrically opposing viewpoints obscures, rather than illumi-
nates, the theoretical landscape.

(iv) J&L suggest, moreover, that Bayesians are unconcerned
with representation and process, and that the Bayesian
approach is driven merely by technical advances in statistics
and machine learning. This seems to us completely backwards:
Most of the technical advances have precisely been to enrich

the range of representations over which Bayesian methods
can operate (e.g., Goodman et al. 2011; Heller et al. 2009;
Kemp et al. 2010a; 2010b) and/or to develop new compu-
tational methods for efficient Bayesian inference and learning.
These developments have substantially expanded the range of
possible hypotheses concerning representations and algor-
ithms in human inference and learning. Moreover, some of
these hypotheses have provided new mechanistic accounts.
For example, Sanborn et al. (2010a, p.1144) have argued that
“Monte Carlo methods provide a source of ‘rational process
models’ that connect optimal solutions to psychological pro-
cesses”; related approaches are being explored in a range of
recent work (e.g., Vul et al. 2009a; 2009b). Moreover, there
has been considerable interest in how traditional psychological
mechanisms, such as exemplar models (Shi et al. 2010) and
neural networks (e.g., McClelland 1998; Neal 1992), may be
viewed as performing approximate Bayesian inference. Such
accounts have been applied to psychological data on, for
example, conditional reasoning (Oaksford & Chater 2010).

We have argued that Bayesian cognitive science as a whole is
closely involved both with understanding representation and
processes and with specifying environmental structure. Of
course, individual Bayesian projects may not address all
levels of explanation, and so forth. We believe it would be
unnecessary (and pernicious) to require each project to
embrace all aspects of cognition. (For instance, we would not
require all connectionist models to make explicit the bridge
to biological neural networks.) Indeed, according to the
normal canons of scientific inference, the more that can be
explained, with the fewer assumptions, the better. Thus,
contra J&L, we see it as a strength, rather than weakness, of
the Bayesian approach that some computational-level analyses
have broad applications across cognition, independent of
specific representational, processing, or environmental
assumptions, as we now explore.

3. The power of Bayesian computational-level explanation:

The case of explaining away. Consider the Bayesian analysis of
explaining away (Pearl 1988). Suppose two independent causes
(e.g., no petrol or dead battery) can cause a car not to start.
Learning that the car did not start then raises the probability of
both no petrol and dead battery: they both provide potential
explanations for the car not starting. But if we then learn that
the battery was dead, the probability of no petrol falls back to
its original value. The battery explains the car not starting; so
the apparent evidence that there might be no petrol is “explained
away.”

Experiments have found that, when given reasoning problems
with verbal materials, people do, indeed, follow this, and related,
patterns of reasoning (e.g., Ali et al. 2011), although this pattern
is clearer in young children (Ali et al. 2010), with adults imposing
additional knowledge of causal structure (Walsh & Sloman 2008;
Rehder & Burnett 2005). Moreover, the same pattern is ubiqui-
tous in perception: If a piece of sensory input is explained as part
of one pattern, it does not provide evidence for another pattern.
This principle emerges automatically from Bayesian models of
perception (Yuille & Kersten 2006).

Furthermore, explaining away also appears to help understand
how children and adults learn about causal regularities (e.g.,
Gopnik et al. 2004; Griffiths & Tenenbaum 2009). If a “blicket
detector” is triggered whenever A and B are present, there is a
prima facie case that A and/or B causes the detector to sound.
But if the detector also sounds when preceded only by A, then
this regularity explains away the sounding of the detector and
reduces the presumed causal powers of B. In animal learning,
a related pattern is known as blocking (Kamin 1969).

Blocking can also be explained using connectionist-style
mechanistic models, such as the Rescorla-Wagner model of
error-driven associative learning (Rescorla & Wagner 1972).
But such explanations fail to capture the fact that partial
reinforcement (i.e., where the putative effect only sometimes

Commentary/Jones & Love: Bayesian Fundamentalism or Enlightenment?

BEHAVIORAL AND BRAIN SCIENCES (2011) 34:4 195



follows the putative cause) extinguishes more slowly than total
reinforcement. Indeed, partial reinforcement should induce a
weak link which should more easily be eliminated. From a Baye-
sian point of view, extinction in partial reinforcement is slower,
because the lack of effect must occur many times before there
is good evidence that the state of the world has really changed
(e.g., a causal link has been broken). This type of Bayesian analy-
sis has led to a wide range of models of human and animal learn-
ing, which are both compared extensively with each other and
with empirical data (for a review, see Courville et al. 2006).
Associative learning accounts of blocking also cannot explain
the rapid and complex dynamics observed in adults’ and chil-
dren’s causal learning: the fact that causal powers may be ident-
ified from just one or a few observed events in the presence of
appropriate background knowledge about possible causal mech-
anisms, and the strong dependence of the magnitude of causal
discounting on the base rates of causes in the environment (Grif-
fiths & Tenenbaum 2009). In contrast, these phenomena are not
only explained by, but were predicted by and then experimentally
verified from, the dynamics of explaining away in Bayesian ana-
lyses of causal learning.

We have seen that a general qualitative principle, explaining
away, which follows directly from the mathematics of probability,
has broad explanatory power across different areas of cognition.
This generality is possible precisely because the Bayesian analysis
abstracts away from mechanism – which presumably differs in
detail between verbal reasoning, perception, and human and
animal learning. Thus, contra J&L, the Bayesian approach is
not merely closely tied with empirical data; it provides a synthesis
across apparently unconnected empirical phenomena, which
might otherwise be explained by using entirely different
principles.

Framing explanations of some phenomena at this high level
of abstraction does not imply commitment to any kind of
Bayesian Fundamentalism. Rather, Bayesian cognitive scien-
tists are merely following the standard scientific practice of
framing explanation at the level of generality appropriate to
the phenomena under consideration. Thus, the details, across
computational, algorithmic, and implementation levels, of
accounts of animal learning, perception, or causal reasoning
will differ profoundly – but the phenomenon of “explaining
away” can insightfully be seen as applying across domains.
This aspect of explanation is ubiquitous across the sciences:
For example, an abstract principle such as the conservation of
energy provides a unified insight across a wide range of physical
phenomena; yet the application of such an abstract principle in
no way detracts from the importance of building detailed
models of individual physical systems.

4. Bayesian cognitive science as a top-down research

strategy. Bayesian cognitive scientists strongly agree with J&L
that it is vital to create mutually constraining accounts of cogni-
tion across each of Marr’s computational levels of explanation.
We stress that what is distinctive about the Bayesian approach,
in distinction from many traditional process models in cognitive
psychology, is a top-down, or “function-first” research strategy,
as recommended by Marr (1982): from computational, to algo-
rithmic, to implementational levels (see, e.g., Anderson 1990;
Chater et al. 2003; Griffiths et al. 2010).

The motivation for this approach is tactical, rather than ideo-
logical. Consider attempting to understand an alien being’s
pocket calculator that uses input and output symbols we
don’t understand. If we realize that an object is doing addition
(computational level), we have some chance of discerning
which type of representations and algorithms (algorithmic
level) might be in play; it is hard to see how any amount of
study of the algorithmic level alone might lead to inferences
in the opposite direction. Indeed, it is difficult to imagine
how much progress could be made in understanding an algor-
ithm, without an understanding of what that algorithm is
computing.

Thus, the problem of reverse engineering a computational
system, including the human mind, seems to inevitably move
primarily from function to mechanism. Of course, constraints
between levels will flow in both directions (Chater & Oaksford
1990). The hardware of the brain will place strong constraints
on what algorithms can be computed (e.g., Feldman &
Ballard 1982), and the possible algorithms will place strong con-
straints on what computational-level problems can be solved or
approximated (Garey & Johnson 1979). Yet, from this reverse-
engineering perspective, the first task of the cognitive scientist
is to specify the nature of the computational problem that the
cognitive system faces, and how such problems might, in prin-
ciple, be solved. This specification typically requires, moreover,
describing the structured environment, the goal of the cognitive
system, and, frequently, computational constraints or represen-
tational commitments (Anderson 1990; Oaksford & Chater
1998b).

The appropriate mathematical frameworks used for this
description cannot, of course, be determined a priori, and will
depend on the nature of the problem to be solved. Analyzing
the problem of moving a multi-jointed motor system might, for
example, require invoking, among other things, tensor calculus
and differential geometry (which J&L mention as important to
developments in physics). A rational analysis of aspects of early
auditory and visual signal processing might invoke Fourier analy-
sis or wavelet transforms. A computational-level analysis of
language use might involve the application of symbolic gramma-
tical and computational formalism. In each case, the appropriate
formalism is also open to challenge: For example, researchers
differ widely concerning the appropriate grammatical or logical
formalism required to represent language and thought; or,
indeed, as to whether symbolic formalism is even required at
all (e.g., McClelland 2010).

Within this diversity, there is an important common math-
ematical thread. A wide range of cognitive problems, from
motor control to perception, language processing, and common-
sense reasoning, involve (among other things) making inferences
with uncertain information, for which probability theory is a
natural mathematical framework. For example, the problem of
finding an underlying pattern in a mass of sensory data –
whether that pattern be the layout of the environment, a set of
causal dependencies, the words, syntactic structure, or
meaning of a sentence, or even the grammatical structure of a
language – is naturally framed in terms of probabilistic (or Baye-
sian) inference. This explains why probability is a common theme
in Bayesian modeling, and why engineering approaches to
solving these and many other problems often take a Bayesian
approach (though there are important alternatives) (Bishop
1996; Manning & Schütze, 1999; Russell & Norvig 2011).
Indeed, Bayesian cognitive scientists have themselves contribu-
ted to extending the boundaries of engineering applications in
some domains (e.g., Griffiths & Ghahramani 2006; Johnson
et al. 2007; Kemp & Tenenbaum 2008; Kemp et al. 2006;
Goodman et al. 2008a).

J&L are concerned that a close relationship between hypoth-
eses in Bayesian cognitive science and technical/mathematical
developments in engineering (broadly construed to include
statistics and computer science) may amount to a confusion
of “technical advances with theoretical progress” (sect. 1,
para. 3). We suggest, by contrast, that theoretical approaches
in cognitive science that are not tied to rich technical develop-
ments have little chance of success. Indeed, given that the
human mind/brain is the most complex mechanism known,
and that its information-processing capacities far outstrip
current artificial intelligence, it is surely inevitable that, in
the long term, successful reverse engineering will be possible
only in the light of spectacular technical developments, along-
side careful use of empirical data. We suggest that Bayesian
cognitive science promises to be a small forward step along
this path.
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Keeping Bayesian models rational: The need
for an account of algorithmic rationality
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Abstract: We argue that the authors’ call to integrate Bayesian models
more strongly with algorithmic- and implementational-level models
must go hand in hand with a call for a fully developed account of
algorithmic rationality. Without such an account, the integration of
levels would come at the expense of the explanatory benefit that
rational models provide.

We commend Jones & Love’s (J&L’s) call for a greater inte-
gration of “Fundamentalist” Bayesian models with algorith-
mic- and implementational-level models in psychology. We
agree that such integrations would significantly improve the
empirical testability of Bayesian models, particularly in light
of the currently unsatisfactory fit of Bayesian models with
normative accounts of rational inference and choice. At the
same time, we believe that this call for integration must be
accompanied by a call for the development of new, comp-
lementary accounts of rationality for the algorithmic and
implementational levels.

The target article might be read (mistakenly, in our view) as
a complete surrender of the rational or computational level of
modeling based on the difficulty of testing Bayesian models
empirically. J&L suggest that rational Bayesian models can
be tested only if the models are subject to constraints that
span across the three levels – constraints which are not pro-
vided by extant Bayesian models. The problem is exacerbated
by the apparent gap between standard accounts of rationality
supporting the Bayesian paradigm (such as diachronic Dutch
book arguments) and the empirical evidence used to confirm
Bayesian models (see, e.g., Eberhardt & Danks [2011] for a
concrete example). The appropriate remedy, J&L suggest, is
to tie the Bayesian models to the algorithmic- and implemen-
tational-level models. But on its own, such an integration
would provide only a reduction of the computational level to
the algorithmic and implementational levels, and so would
relinquish the explanatory benefits the computational level
provides.

Bayesian models have achieved widespread popularity in
part because, as computational-level models, they describe
an inference procedure that is rational or optimal given the
agent’s task. Bayesian models purport to provide a certain
type of explanation – an optimality explanation, rather than a
mechanistic one – while not being committed to a particular
algorithm or implementation in the learner’s brain. As
already noted, however, these “explanations” are undermined
by the misfit between empirical results and standard accounts
of rationality. The common response in the so-called Funda-
mentalist Bayesian literature (to the extent that there is one)
has been that rational behavior is defined on a case-by-case
basis, where the appropriate principles of rationality
depend on the learner’s particular context (see, e.g., Oaksford
& Chater 2007). Obviously, from a normative perspective,
such claims are unsatisfactory: We need an account of rational
principles that are fixed independently of the learner’s
behavior.

We contend that the target article’s call for a closer integration
of the computational and algorithmic levels of modeling provides
an ideal opportunity: Rather than attempting to develop an
account of rational behavior independent of the learner’s

cognitive infrastructure, an integration of levels should go hand
in hand with the development of an account of algorithmic
rationality. That is, we require an account of rationality that is
informed by the learner’s constraints at the implementational
and algorithmic levels. By providing such an integrated account
of rationality, we can resist the purely reductionist view in
which a computational-level model is ultimately assessed only
on the basis of its success at the algorithmic and implementa-
tional levels, while preserving the (additional, distinctive) expla-
natory power provided by rational models for all levels. (J&L’s
discussion of a possible “Bayesian Enlightenment” is, we think,
closely related.)

What would an account of algorithmic rationality look like?
Often, suggestions along these lines are made under the
heading of bounded rationality. In many cases, however,
models of bounded rationality (e.g., Simon’s “satisficing,” or
Gigerenzer’s “fast and frugal heuristics”) propose boundedness
constraints that are not informed by particular implementational
constraints of the learner, but rather are motivated by abstract
limitations or efficiencies of the computational procedure.
Nevertheless, they are on the right track. Accounts of algorithmic
rationality would have to provide support for models that are
empirically adequate, and must approximate behavior that is
deemed ideally rational (e.g., maximization of expected utility,
avoidance of Dutch book, etc.). At the same time, accounts of
algorithmic rationality must integrate known implementational
(i.e., biological) constraints. The resulting models would be
neither just computational nor just algorithmic, but would
instead provide an account that is both descriptively adequate
and normatively supported. Confirmation of such a model
would require both empirical confirmation at multiple levels
(e.g., matching the right input-output relation, predicting that
neurons will fire in particular places at particular times), as
well as an account of why this behavior is the rational or
optimal thing to do in light of the given task and the cognitive
and neural infrastructures.

We thus argue that there needs to be not only a “tying down”
of the rational models to algorithmic- and implementational-
level constraints, but also a “pulling up” of algorithmic-level
models to go beyond purely descriptive accounts (that occasion-
ally come paired with evolutionary “how-possibly” stories) to
explanations of why the particular algorithm or implementation
is the right one for the task. The fundamental insight of Newell
and Simon, Pylyshyn, and Marr, that there are different levels of
explanation, has led to enormous productivity at each of the
different levels. J&L are right to point out that these efforts
have drifted apart: Models at different levels are frequently
no longer informative about other levels. However, a re-
integration that simply reduces one of the levels to the others
would abandon one of the distinctive forms of explanation
identified in that original insight. We urge instead that any re-
integration must include the development of an account of algo-
rithmic-level rationality, which then permits us to determine
whether Bayesian models remain successful, both empirically
and theoretically.

Survival in a world of probable objects:
A fundamental reason for Bayesian
enlightenment
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Abstract: The only viable formulation of perception, thinking, and action
under uncertainty is statistical inference, and the normative way of
statistical inference is Bayesian. No wonder, then, that even seemingly
non-Bayesian computational frameworks in cognitive science ultimately
draw their justification from Bayesian considerations, as enlightened
theorists know fully well.

Setting up “Bayesian Fundamentalism” as a straw man for criti-
cism, which is what Jones & Love (J&L) do in their target
article, is counterproductive for two related reasons. The first
reason is both substantive and didactic. The only viable general
formulation of perception, cognition, and action is statistical
inference under uncertainty, which proceeds from prior experi-
ence to probabilistic models that can support principled
decision-making and control, and thereby make informed behav-
ior possible. Branding the realization that the modus operandi of
any mind is fundamentally Bayesian as “fundamentalist” is akin to
condemning Hamiltonian mechanics for its reliance on a single
overarching principle. This is not a good idea, if even a single
reader decides after reading the target article that some kind of
pluralism ideal should trump a genuine insight into the workings
of the world.

In the Enlightenment-era natural philosophy and in the
sciences that grew out of it, the insight that singles out statistics
as the only possible conceptual foundation for a sound theory
of how the mind works can be traced back to Hume’s Treatise:
“All knowledge resolves itself into probability” (Hume 1740,
Part IV, sect. I). More recently, J. J. Gibson (1957) noted in a
book review, from which we borrowed the title of the present
commentary, that “perception is always a wager.” By now, it
has become incontrovertibly clear that not only perception, but
thinking and action too, indeed take the form of statistical infer-
ence (Glimcher et al. 2008; Heit 2000; Knill & Richards 1996;
Körding & Wolpert 2006; for a brief overview, see Chater et al.
2006).

Statistical inference is indispensable in cognition because
informed behavior requires a degree of foresight; that is, antici-
pating and planning for the future. Foresight, in turn, is possible
because the world is well-behaved (the past resembles the future
often enough to support learning from experience), but can be
only probabilistic because the regularities in the world’s behavior
manifest themselves as merely statistical patterns in sensorimotor
data (Edelman 2008b).

The rich theory of statistical learning from experience devel-
oped over the past several decades, all of which ultimately
relies on this view of cognition, is very diverse. Many of the tech-
niques that it encompasses have been inspired by particular
classes of problems, or solution methods, that on the face of it
have no bearing on the Bayesian debate. For instance, insofar
as perception is ill-posed in the formal sense that a given
problem typically admits multiple solutions, it needs to be regu-
larized by adding extra constraints (Poggio 1990; cf. Tikhonov &
Arsenin 1977). Likewise, modeling problems in motor control
can be approached via function approximation (Mussa-Ivaldi &
Giszter 1992) and control theory (Kawato 1999).

At the same time, because the normative way of performing
statistical inference is Bayesian (Howson & Urbach 1991; Scher-
vish 1995; Wasserman 2003), one would expect that all such
methods would ultimately reduce to Bayesian inference, and
indeed they do. In particular, perceptual regularization can be
given a statistical formulation (Marroquin et al. 1987), and so
can function approximation – be it classification or regression
(Bishop 2006; Hastie et al. 2003/2009). More generally, various
popular theoretical approaches in cognitive science, too numer-
ous to mention here, which may appear refreshingly pluralistic
when contrasted to the big bad Bayes, do in fact draw their jus-
tification from Bayesian considerations (Bishop 2006; Hastie
et al. 2003/2009).

This brings us to the second reason to shun the distinction
between Bayesian Fundamentalism and Bayesian Enlighten-
ment, which is that the latter builds upon the former rather

than supplanting it. It used to be possible to produce good
work in computer vision or natural language engineering
without giving much thought to the ultimate justification of the
methods one uses, and it may still be the case in some isolated
corners of those fields. Likewise, in cognitive modeling, where
theoretical confusion – especially conflation of Marr’s levels of
understanding – is often endemic (cf. Edelman 2008a; 2008c),
modelers may happily use “backpropagation networks” without
giving much thought to the fact that they are doing function
approximation, which in turn rests on Bayesian principles.
Although it is always good to know exactly why your model
works as it does (or does not), in practice focusing on the more
problematic levels, such as coming up with a good theory of
the hypothesis space that applies to the learning task at hand,
may actually lead to progress that would elude someone who is
concerned exclusively with the fundamentals.

Thus, Bayesian theorists worth their salt (do we need to worry
about others?) know that a full-fledged theory has many aspects
to it that must be addressed, including, in addition to the just-
mentioned issue of the structure of the hypothesis space,
various questions regarding the nature of inference and
decision-making algorithms that have to be computationally
tractable and biologically feasible. Crucially, they also know
that the very need for statistical inference and the constraint of
having to deal incrementally with a stream of environmental
data are non-negotiable. If this earns them the label of funda-
mentalism, we should all be eager to share it with them, norma-
tively. After all, we owe to it our survival.

Don’t throw out the Bayes with the bathwater
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Abstract: We highlight one way in which Jones & Love (J&L)
misconstrue the Bayesian program: Bayesian models do not represent a
rejection of mechanism. This mischaracterization obscures the valid
criticisms in their article. We conclude that computational-level
Bayesian modeling should not be rejected or discouraged a priori, but
should be held to the same empirical standards as other models.

There is an important point in this target article by Jones & Love
(J&L); unfortunately it is hard to see as it is swimming below
some very red herrings. Bayesians do not reject mechanism,
mental representation, or psychological or neural process. Com-
parisons to behaviorism are thus misleading. Moreover, the
utility of particular Bayesian models does not rest on whether
they engage with mechanistic issues, nor even whether they are
concerned with issues of mechanism at all; it rests on what new
light the Bayesian analysis sheds on the problem, and this
depends on the same principles of evaluation that should be
applied to any theory. There is a meaningful debate to be had
about the value of Bayesian modeling, but ironically, given the
title of the article, we fear that J&L’s wholesale rejection of
“Bayesian Fundamentalism” will lead to arguments about
whose religion is better. In geopolitics, these kinds of disputes
often produce “intractable conflicts” and do not lead anywhere
productive (Bar-Tal 2002). In this commentary we first highlight
one way in which J&L’s analysis goes awry and clarify what we
believe the debate should not be about. We then turn to what
the debate should be about and suggest some prescriptions for
good Bayesian practice.
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A central pillar of J&L’s argument is the claim that Bayesian
modeling at the computational level represents a rejection of
mechanism and psychological process in favor of a purely math-
ematical analysis. This is a straw man that conflates the rejection
of psychological representations and processes with what Baye-
sian models really do, which is abstract over cognitive processes.
Rejecting mechanism would indeed imply that there is nothing to
a Bayesian model except for the “conceptually trivial” (according
to J&L; see target article, Abstract) mathematical relation
between inputs and outputs. This idea is reflected in the puzzling
language that the authors use to explain the nature of the hypoth-
esis space. They write, “In general, a hypothesis is nothing more
than a probability distribution” (sect. 3, para. 2, repeated in para.
9). It is true that any Bayesian model is committed to the assump-
tion that it is coherent to represent a probability distribution over
the hypothesis space, but this does not mean that a hypothesis is a
probability distribution. Rather, in the Bayesian models we are
familiar with, hypotheses are interpretable as psychological con-
structs, such as partitions of conceptual space (e.g., Tenenbaum
& Griffiths 2001) or causal models (e.g., Steyvers et al. 2003). For
that reason, a Bayesian model for a particular task is not concep-
tually trivial, but rather embodies an analysis specific to the
mental models presumed to be relevant to that task. It is true
that modelers are not always as clear as they should be about
whether these hypotheses represent psychological entities or
merely a conceptual analysis of the task (or both), and the
import of the model does depend critically on that. But either
way, such a model can be extremely useful. In the former case,
it provides a descriptive hypothesis. In the latter, it may shed
new light on how we should think about the task. Critically,
none of this is contingent on whether the model engages with
questions about reaction time, neurophysiological information,
or other “mechanistic” data.

An important criticism that we believe should be taken away
from the target article is that some Bayesian modelers fail to
clearly distinguish normative from descriptive claims. Vagueness
about this issue has led to confusion between two very different
ideas: “rational” and “computational” (Sloman & Fernbach
2008). A rational model is one that explains data by showing
how it reflects optimal behavior, given the task at hand (Anderson
1990). A computational model is one that describes the function
that people are engaged in, whether or not that function is what
they should be engaged in. We agree completely with J&L on this
issue: The fact that a model is at the computational level is not an
excuse for its failure to fit data. Violations of a model’s predictions
should be taken seriously and not explained away as due to the
approximate way the optimal computation is implemented. And
a rational analysis does not demonstrate rationality if people do
not abide by it. The beauty of rational analysis is its ability to
explain behavior by appealing to the structure of the world.
When a model fails to be crystal clear about which of its parts
reflect the world and which reflect mental or neural facts, its con-
tribution becomes obscure.

This issue is not a problem with Bayesianism per se, but it does
suggest principles for good Bayesian practice. For one, model
comparisons and sensitivity analyses should be de rigueur to
show whether the phenomenon falls uniquely out of the Bayesian
model or whether the model is merely consistent with it. It is often
helpful to a reader to explain precisely what in the model is gener-
ating the phenomenon of interest, and whether that aspect is
inherent to the model’s structure and would emerge from any
parameterization, or whether it is due to an assumption. Modelers
should be clearer about whether their model is a psychological
theory or a normative analysis, and they should consider contradic-
tory data conscientiously as opposed to explaining it away. Of
course, these are just recommendations for good scientific practice
and thus they hardly seem controversial. J&L are right to point out
that Bayesian modelers sometimes ignore them.

Were these practices adopted more systematically, Bayesian
models would become more falsifiable. This is a double-edged

sword, of course: Given the reams of evidence that cognition is
fallible, Bayesians are fighting an uphill battle (at least in high-
order cognition). But only falsifiable theories can be truly
revolutionary.

Osiander’s psychology

doi:10.1017/S0140525X11000276

Clark Glymour
Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA 15213.

cg09@andrew.cmu.edu

Abstract: Bayesian psychology follows an old instrumentalist tradition
most infamously illustrated by Osiander’s preface to Copernicus’s
masterpiece. Jones & Love’s (J&L’s) criticisms are, if anything,
understated, and their proposals overoptimistic.

In his preface to Copernicus’s masterpiece, Osiander wrote, “For
these hypotheses need not be true or even probable; if they
provide a calculus consistent with the observations, that alone
is sufficient” (Copernicus 1995).

So far as I can tell, Bayesian psychologists are doing the kind of
thing Osiander said astronomers should be doing. Bayesian psy-
chologists collect data from experiments and in each case provide
a model for the data. In these models, subjects have prior prob-
abilities for various hypotheses and likelihoods for the data on
each hypothesis. Stimuli change their degrees of belief according
to Bayes’ Rule, and then the experimental subjects somehow use
the updated probabilities to perform some action. The minimal
Bayesian psychological claim is just that various experiments on
learning behavior can be accommodated in this way. That also
seems to be the maximal claim. Bayesian psychologists – at
least those I read and talk with – do not claim that their subjects
are deliberately, consciously, carrying out a computation of pos-
terior degrees of belief, and deliberately, consciously, using
the result in a decision rule. In many cases that would be implau-
sible, and in any case, if that were the claim, a bit of protocol
elicitation would confirm or disconfirm it. But neither do Baye-
sian psychologists exactly say that their participants are carrying
out the Bayesian computations and applying the decision rule
unconsciously.

That some Bayesian model or other succeeds in accommodat-
ing learning data is no surprise: The experimenters get to screen
the subjects, to postulate the priors, and to postulate post hoc the
rules – however irrational they may appear by decision theoreti-
cal standards – mapping posterior probabilities to behavior.
Caution and modesty are virtues in science and in life, and agnos-
ticism may be the best theology, but vacuity is not a scientific
virtue. Here is a list of further complaints:

First, for a computationally bounded agent, there is neither a
theoretical nor a practical rationale for learning and judgment
exclusively in accord with Bayesian principles.

Second, the Bayesian framework itself is empirically vacuous:
Anything, or almost anything, could be explained by adjusting
priors and likelihoods.

Third, experiments showing “probability matching” in forced
choice learning tasks are prima facie in conflict with Bayesian cri-
teria for rationality. Bayesian explanations require an ad hoc
error theory that is seldom, if ever, justified empirically.

Fourth, scientific practice shows that Bayesian principles are
inadequate when novel hypotheses are introduced to explain pre-
viously accepted data. Old evidence, long established, is taken to
be evidence for novel hypotheses. (The most famous example:
The anomalous advance of the perihelion of Mercury, estab-
lished in 1858, was evidence for the novel general theory of rela-
tivity, announced in 1915.) Similar behavior should be expected
in psychological experiments, although I don’t know of any test of
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this expectation. By Bayesian principles, established evidence,
fully believed, cannot confirm or support novel hypotheses.

Fifth, these points, as well as many of Jones & Love’s (J&L’s) in
the target article, have already been made in the philosophical
literature (Eberhardt & Danks, in press; Glymour 2007), which
Bayesian advocates have largely ignored. As J&L suggest in
their title, some Bayesian cognitive modelers do seem to be
fundamentalists.

What could be the point of all this ritualistic mathematical
modeling? Ptolemy, for all of the infinite flexibility of his model-
ing devices, at least predicted future eclipses and positions of the
planets, the sun, and the moon. I know of no Bayesian psycho-
logical prediction more precise than “We can model it.”
Ptolemy at least found robust regularities of the observed vari-
ables. I know of no essentially Bayesian psychological discovery
of a robust behavioral regularity – that is of a prediction of a
phenomenon that would not be expected on contrary grounds.
Sometimes the Bayesian claim is that a Bayesian model saves
the phenomena better than specific alternatives do, but that
depends on the phenomena and the alternatives. Since Bayesian
models came into fashion, psychological hands are sometimes
waved toward Bayesian accounts when simple heuristics would
account for the subjects’ judgments as well or better.

J&L propose bigamous weddings, one of Bayesian psychology
to the rest of conventional cognitive psychology, and one of Baye-
sian psychology to cognitive neuropsychology. The latter pairing
may prosper, but I strongly suspect it will be a marriage of
unequal partners: The neuropsychologists will be the breadwin-
ners. In any case, the interesting recent and current work on
neural encodings that can be interpreted to represent probabil-
ities and conditional probabilities is at an astronomical distance
from Bayesian psychological models.

At least Bayesian psychology at least does no harm. It does not
obfuscate like psychoanalysis, Hegelian metaphysics, or postmo-
dern literary studies. Its real cost is in the lost opportunities for
good minds to advance our understanding of how the brain pro-
duces thought, emotion, and action.

Probabilistic models as theories of children’s
minds
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Abstract: My research program proposes that children have representations
and learning mechanisms that can be characterized as causal models of the
world – coherent, structured hypotheses with consistent relationships to
probabilistic patterns of evidence. We also propose that Bayesian
inference is one mechanism by which children learn these models from
data. These proposals are straightforward psychological hypotheses and
far from “Bayesian Fundamentalism.”

So who exactly are these Bayesian Fundamentalists? Since I don’t
know or know of any researchers who fit Jones & Love’s (J&L’s)
description, I can’t defend them. Instead, let me describe what
my colleagues and students and I have actually done over the
last ten years. Some 10 years ago, Clark Glymour and I proposed
that children have representations and learning mechanisms that
can be characterized as causal models of the world – coherent,
structured hypotheses with consistent and predictable relation-
ships to probabilistic patterns of evidence – and that Bayesian
inference is one mechanism by which children may learn these
models from data.

This proposal has exactly the same status as any other claim in
psychology. Since the cognitive revolution, it has been a

commonplace that we can explain the mind in terms of represen-
tations and rules. It is also a commonplace of the philosophy of
cognitive science that these representations and rules can
involve many levels of abstraction, from high-level represen-
tations such as intuitive theories to neural representations of
three-dimensional structure. In vision science, for example, the
poster child of successful cognitive science, explanations at
many levels from ideal observer theories to neural implemen-
tations have been mutually illuminating.

Bayesian learning is just one part of a broader approach, better
called the “probabilistic model” approach (see Gopnik & Schulz
2007; Griffiths et al. 2010). (For applications to cognitive devel-
opment, see Gopnik et al. [2004] and special sections of Develop-
mental Science [Schulz et al. 2007b] and Cognition [Buchsbaum
et al., in press]). The central advance has not been Bayes’ law
itself, but the ability to formulate structured representations,
such as causal graphical models, or “Bayes nets” (Pearl 2000;
Spirtes et al. 2000), or hierarchical causal models, category hier-
archies, and grammars, that can be easily combined with prob-
abilistic learning, such as Bayesian inference.

I agree with J&L that formal models are useful only if they can
help address empirical questions. For developmental psycholo-
gists, the great question is how children can learn as much as
they do about the world around them. In the past, “theory theor-
ists” proposed that children learn by constructing hypotheses and
testing them against evidence. But if this is a deterministic
process, then the “poverty of the stimulus” problem becomes
acute. In contrast, if the child is a probabilistic learner, weighing
the evidence to strengthen support for one hypothesis over
another, we can explain how children are gradually able to
revise their initial theories in favor of better ones.

Empirically, we have discovered – as a result of extensive and
often challenging experiments – that young children do indeed
behave like probabilistic learners, rather than simply using asso-
ciationist mechanisms to match the patterns in the data or fid-
dling with details of innate core knowledge. The framework
lets us make precise predictions about how children will
behave; for example, that they will infer a common cause struc-
ture with one set of evidence, but infer a causal chain in an
almost identical task with slightly different evidence (Schulz
et al. 2007a). From a more specifically Bayesian perspective, it
also allows us to make predictions about the probability of par-
ticular responses. The empirical likelihood that a child will
make one prediction or another is closely matched to the pos-
terior distribution of hypotheses that support those predictions
(e.g., Schulz et al. 2007b).

The ultimate test of any perspective is whether it generates
new and interesting empirical research. Researchers inspired
by this approach have already begun to make important develop-
mental discoveries – discoveries that don’t fit either a connec-
tionist/dynamic or nativist picture. Nine-month-olds, for
example, can make causal inferences that go beyond association
(Sobel & Kirkham 2006); 20-month-olds can infer a person’s
desire from a non-random sampling pattern (Kushnir et al.
2010); and 4-year-olds discover new abstract variables and
rules from only a few data points (Lucas et al. 2010; Schulz
et al. 2008), integrate new evidence and prior knowledge
(Kushnir & Gopnik 2007; Schulz et al. 2007b; Sobel et al.
2004), and rationally experiment to uncover new causal structure
(Schulz & Bonawitz 2007).

The framework has also enabled us to identify cases where
children behave in ways that are interestingly different from
ideal inference engines. For example, Kushnir and Gopnik
(2005) showed that children weight their own actions more
heavily than they normatively should for purposes of causal infer-
ence. Bonawitz et al. (2010) have shown that 2-year-olds have
difficulty integrating purely correlational information and infor-
mation about the outcomes of actions.

The precision of these models also enables us to test compet-
ing hypotheses. For example, we recently described formal
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models of learning by imitation. These models gave different
weights to statistical evidence and a demonstrator’s intentions
(Buchsbaum et al., in press). Comparing the models with the
data allowed us to show that young children make prior assump-
tions about why people act, and that these assumptions can
explain why they sometimes “overimitate,” reproducing every-
thing that the teacher does, and also predict the degree to
which overimitation will occur.

It would certainly be helpful to relate these more abstract
accounts to algorithmic-level instantiations. This has already
been done to some extent (Danks 2003), and we are working
on precisely this problem in my lab and others at the moment
(Bonawitz et al. 2010). Ultimately, we would also like to relate
these representations to neural implementations. It might also
be interesting to relate these findings to memory or attention.
But this is simply the usual scientific work of connecting different
research programs, and we can’t tell which connections will be
illuminating beforehand. There is nothing privileged about infor-
mation processing or neuroscience that means that such research
is about “mechanisms” while research into representations is not.
This would be like rejecting the explanation that my computer
saved the file when I pushed ctrl-s because ctrl-s is the save
command in Windows, since this explanation doesn’t refer to
the computer’s working memory or wiring diagrams.

I would be happy if J&L saw this research program as a part of
the Bayesian Enlightenment. If so, however, it is an enlighten-
ment that has been in place for at least ten years.

The uncertain status of Bayesian accounts
of reasoning
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Abstract: Bayesian accounts are currently popular in the field of
inductive reasoning. This commentary briefly reviews the limitations of
one such account, the Rational Model (Anderson 1991b), in explaining
how inferences are made about objects whose category membership is
uncertain. These shortcomings are symptomatic of what Jones & Love
(J&L) refer to as “fundamentalist” Bayesian approaches.

The tension between what Jones & Love (J&L) refer to as “fun-
damentalist” and “enlightened” Bayesian approaches to cognition
is well illustrated in the field of human reasoning. Historically,
Bayesian models have played an important role in trying to
answer an intriguing but difficult problem in inductive reasoning:
how people make predictions about objects whose category
membership is uncertain. This problem can be illustrated by
the example of a person hiking through a forest who hears a rus-
tling in the scrub near her feet and wishes to predict whether
they are in danger. Although the hiker knows of many animals
(e.g., snakes, small mammals, birds) that could produce the
noise, she cannot be certain about the actual source. The main
question is to what extent does she consider the various category
alternatives when making a prediction about the likelihood of
danger?

One influential approach to this problem is Anderson’s (1991b)
Rational Model (for a more recent instantiation, see Sanborn
et al. 2010a). This Bayesian model assumes that “categorization
reflects the derivation of optimal estimates of the probability of
unseen features of objects” (Anderson 1991b, p. 409). In the
case of inductive prediction with uncertain categories, the
model assumes that predictions will be based on a normative con-
sideration of multiple candidate animal categories and the

conditional probability of a target feature (e.g., whether or not
the animal is likely to cause injury) within each category.

One of the appeals of the model is that it can account for cases
of inductive prediction where category membership of the target
object is uncertain, as well as cases where the object’s category
membership has been established with certainty. In contrast,
most non-Bayesian accounts of induction (e.g., Osherson et al.
1990; Sloman 1993) only deal with the latter case.

Despite this promise, the Rational Model suffers from many of
the shortcomings that J&L attribute to “fundamentalist” Bayesian
approaches. These include the following:

1. Lack of attention to psychological processes such as selective
attention. A considerable body of empirical evidence shows that,
contrary to the Bayesian account, people do not consider all rel-
evant category alternatives when making feature predictions (for
a review, see Murphy & Ross 2007). Instead, they generally make
predictions based only on the category that a target object is most
likely to belong to. In other words, in most cases of uncertain
induction people ignore the uncertainty and selectively attend
to the most likely category alternative. Although this leads to
non-normative predictions, it may be a useful heuristic, leading
to predictions that are approximately correct while avoiding
much of the complex computation involved in integrating prob-
abilities across categories (Ross & Murphy 1996).

2. Implausible or incorrect assumptions about representation.
Like many other Bayesian accounts, the Rational Model makes
assumptions about feature and category representation that are
not well-grounded in psychological theory and data. The model
assumes that people treat features as conditionally independent
when making inductive predictions. This means that the target
object’s known features (e.g., the rustling sound) are only used
to identify the categories to which it might belong. These features
are then ignored in the final stage of feature prediction. This
assumption ignores a wealth of evidence that people are sensitive
to correlations between features in natural categories and that
such feature correlations influence categorization (Malt &
Smith 1984; Murphy & Ross 2010; Rosch & Mervis 1975). More-
over, we have shown that people frequently base their inductive
predictions on such feature correlations (Griffiths et al., in press;
Newell et al. 2010; Papadopoulos et al. 2011).

3. Failure to consider the impact of learner’s goals and intent.
The extent to which inductive prediction conforms to Bayesian
prescriptions often reflects the goals of the reasoner. The same
individual can show more or less consideration of category
alternatives when making an inductive prediction, depending
on a variety of task-specific factors such as the degree of associ-
ation between category alternatives and the to-be-predicted
feature and the cost of ignoring less likely alternatives (Hayes
& Newell 2009; Ross & Murphy 1996). When people do factor
category alternatives into their predictions, it is not necessarily
because they are following Bayesian prescriptions but because
of changes in what J&L refer to as “mechanistic considerations”
such as changes in the relative salience of the categories (Griffiths
et al., in press; Hayes & Newell 2009).

4. Disconnect between representation and decision processes.
Bayesian algorithms like those proposed by Anderson (1991b)
are best interpreted as models of the decision process. As such,
they often make assumptions about (rather than examine) how
people represent the category structures involved in induction.
In the case of uncertain induction this is a problem because
the neglect of less probable category alternatives may occur
prior to the final decision, when people are still encoding evi-
dence from the candidate categories (Griffiths et al., in press;
Hayes et al. 2011). It remains an open question whether Bayesian
models of induction can capture such biases in evidence-
sampling and representation (e.g., through the appropriate
adjustment of priors).

In sum, the Rational Model has not fared well as an account of
induction under category uncertainty. Many of the model’s short-
comings reviewed here are common to other Bayesian models of
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cognition. These shortcomings do not necessarily mean that we
should abandon Bayesian approaches. But progress in fields
like inductive inference is more likely to be achieved if Bayesian
models are more grounded in psychological reality.

In praise of secular Bayesianism
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Abstract: It is timely to assess Bayesian models, but Bayesianism is not a
religion. Bayesian modeling is typically used as a tool to explain human
data. Bayesian models are sometimes equivalent to other models, but
have the advantage of explicitly integrating prior hypotheses with new
observations. Any lack of representational or neural assumptions may
be an advantage rather than a disadvantage.

The target article by Jones & Love (J&L) is timely, given the
growing importance of Bayesian models and the need to assess
these models by the same standards applied to other models of
cognition. J&L’s comments about the pitfalls of behaviorism as
well as connectionist modeling are well made and give good
reason to be cautious in the development of Bayesian models.
Likewise, the comments about recent trends in economics pose
an interesting challenge for Bayesian modeling.

However, the religious metaphor is not apt. Most researchers
cited under the heading of Bayesian Fundamentalism also have
interests in psychological mechanisms and/or neural
implementation and employ other modeling approaches in
addition to Bayesian modeling. Hence, Bayesian modeling is
less of a new religion and more of a new tool for researchers
who study cognition by using both empirical and modeling
methods (cf. Lewandowsky & Heit 2006). Although there is
merit to J&L’s point that Bayesian modeling often does not
include empirical measurement of the environment, it would
be a mistake to say that Bayesian modeling is mainly a norma-
tive approach or that it does not involve data collection. Most
Bayesian research cited by J&L considers the adequacy of
Bayesian models as descriptive models and compares their pre-
dictions to human data.

Therefore, we would say that Bayesians are just like everyone
else. Bayesian models are often very similar, if not equivalent, to
other kinds of models. For example, in memory research, a bio-
logically inspired connectionist model (Norman & O’Reilly
2003) makes many of the same predictions as earlier Bayesian
models of memory (McClelland & Chappell 1998; Shiffrin &
Steyvers 1997). In this case, the Bayesian models fit a large
number of results and could no more be dismissed on the
basis of experimental data than connectionist models. Indeed,
connectionist models can implement approximate Bayesian
inference (McClelland 1998), and exemplar models likewise
have this capability (Heit 1995; Shi et al. 2010). At a more
general level, connectionist models such as mixture of experts
models (Heit & Bott 2000; Heit et al. 2004; Jacobs 1997), as
well as exemplar models (Heit 2001), can implement the key
notion of Bayesian models – that prior knowledge is integrated
with new observations to form a posterior judgment. Thus, it is
difficult to dismiss Bayesian models when alternative models are
fundamentally doing the same work or even making the same
predictions.

J&L do not place sufficient weight on one of the main
benefits of Bayesian models; namely, in explaining how prior
hypotheses are put together with new observations. Cognitive
activities take place in knowledge- and meaning-rich

environments; for example, expectations, stereotypes, and the-
ories affect memory, reasoning, and categorization (e.g., Bar-
tlett 1932; Dube et al. 2010; Hayes et al. 2010; Heit 1997;
Heit & Bott 2000; Murphy & Medin 1985). The role of knowl-
edge is often obscured in experimental research using abstract
stimuli. It would be a sterile model of cognition indeed that
could only deal with these blank-slate situations involving
meaningless materials. The approach of Bayesian models,
incorporating prior hypotheses, is crucial to their success as
models of many cognitive activities, and is a distinctive advan-
tage over models that assume cognition does not incorporate
prior hypotheses.

The target article criticizes Bayesian models for a lack of rep-
resentational assumptions. This point is questionable; hypothesis
spaces are arguably representations of the world and could be
treated as psychological representations (Heit 1998; 2000; Kemp
& Tenenbaum 2009). However, a lack of representational assump-
tions could be a virtue, because representational assumptions are
usually wrong, or at best, untestable. For example, in reasoning
research, there has been a long-running debate between mental
model representation and mental rule representation; in categoriz-
ation research, there has been a related debate between exemplar
representation versus abstract representation (Rips 1990).
Presumably, in each case at least one assumed form of represen-
tation is wrong, although decades of research has not resolved
the matter. It has been further argued that sufficiently powerful
representational systems, along with appropriate processing
assumptions, are indistinguishable (Anderson 1978; Barsalou
1990). On these grounds, any lack of strong representational
assumptions in Bayesian models seems a wise approach.

A similar point can be made about a lack of predictions for the
neural level. Not making predictions about the brain could actu-
ally be a virtue, if the alternative is to force post hoc predictions
that do not follow distinctively from the model. For example, the
mental model theory of reasoning has often been tested by
looking for activation in the left hemisphere of the brain. The
origin of this prediction appears to be Johnson-Laird (1994),
and it has been tested in many brain-imaging studies of reason-
ing. Although reasoning tasks are typically associated with left
hemisphere activation, the results have actually been mixed,
with many studies showing activation in both hemispheres, and
on the whole, these brain-imaging studies do not distinguish
between current theories of reasoning (see Goel [2007] for a
review). An absence of neural predictions for Bayesian modeling
could reflect a correct understanding of how best to use this tool.
It would be better to make as few neural or representational
assumptions as possible, than to make unfounded ones.

The fact that Bayesian models are rational does not imply that
researchers who use them are irrational fundamentalists. Baye-
sian modeling is simply a new tool with advantages and disadvan-
tages like any other kind of modeling. J&L make a vivid case for
some disadvantages, but greatly understate the advantages of
models that explain how prior hypotheses are put together with
new observations, using a minimum number of unfounded
assumptions. Still, J&L deserve credit for fostering a debate on
these important models.

Relating Bayes to cognitive mechanisms
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Abstract: We support Enlightenment Bayesianism’s commitment to
grounding Bayesian analysis in empirical details of psychological and
neural mechanisms. Recent philosophical accounts of mechanistic
science illuminate some of the challenges this approach faces. In
particular, mechanistic decomposition of mechanisms into their
component parts and operations gives rise to a notion of levels distinct
from and more challenging to accommodate than Marr’s.

We find attractive Enlightenment Bayesianism’s commitment to
grounding Bayesian analysis in knowledge of the neural and
psychological mechanisms underlying cognition. Our concern is
with elucidating what the commitment to mechanism involves.
While referring to a number of examples of mechanistic accounts
in cognitive science and ways that Bayesians can integrate
mechanistic analysis, Jones & Love (J&L) say little about the
details of mechanistic explanation. In the last two decades,
several philosophers of science have provided accounts of
mechanistic explanation and mechanistic research as these
have been practiced in biology (Bechtel & Abrahamsen 2005;
Bechtel & Richardson 1993/2010; Machamer et al. 2000) and
the cognitive sciences (Bechtel 2008; Craver 2007). Drawing
on these can help illuminate some of the challenges of integrating
mechanistic analysis into Bayesian accounts.

At the core of mechanistic science is the attempt to explain how
a mechanism produces a phenomenon by decomposing it into its
parts and operations and then recomposing the mechanism to
show how parts and operations are organized, such that when
the mechanism is situated in an appropriate environment, it gen-
erates the phenomenon. One of the best-developed examples in
cognitive science is the decomposition of visual processing into a
variety of brain regions, each of which is capable of processing
different information from visual input. When organized together,
they enable individuals to acquire information about the visible
world. Decomposition can be performed iteratively by treating
the parts of a given mechanism (e.g., V1) as themselves mechan-
isms and decomposing them into their parts and operations.

A hierarchical ordering in which parts are at a lower level than
the mechanism is thus fundamental to a mechanistic perspective.
This notion of levels is importantly different from that advanced by
Marr (1982), to which J&L appeal, which does not make central
the decomposition of a mechanism into its parts and operations.
To illustrate the mechanistic conception of levels in terms of math-
ematical accounts, it is often valuable to provide a mathematical
analysis of the phenomenon for which the mechanism is respon-
sible. In such an account (e.g., the Haken-Kelso-Bunz [HKB]
model of bimanual cordination described by Kelso 1995), the vari-
ables and parameters refer to characteristics of the mechanism as a
whole and aspects of the environment with which the mechanism
interacts. But to explain how such a mechanism functions one
must identify the relevant parts and their operations. The function-
ing of these parts and operations may also require mathematical
modeling (especially when the operations are nonlinear and the
organization non-sequential; see Bechtel & Abrahamsen 2010).
These models are at a lower level of organization and their parts
and operations are characterized in a different vocabulary than
that used to describe the phenomenon (as the objective is to
show how the phenomenon is produced by the joint action of
parts that alone cannot produce it).

We can now pose the question: At what level do Enlightenment
Bayesian accounts operate? Do they, like Bayesian Fundamentalist
accounts, operate at the level of the whole person, where the
hypothesis space reflects people’s actual beliefs? Beliefs are most
naturally construed as doxastic states of the person that arise from
the execution of various operations within the mind/brain. J&L’s
invocation of Gigerenzer’s work on cognitive heuristics (e.g., Giger-
enzer & Todd 1999) suggests this is a perspective they might
embrace – the heuristics are inference strategies of agents and do
not specify the operations that enable agents to execute the heuris-
tics. The resulting Bayesian model may reflect but does not directly
embody the results of decomposing the mind into the component
operations that enable it to form beliefs.

Another possibility is that the Bayesian hypothesis space might
directly incorporate details of the operations performed by com-
ponents (e.g., brain regions identified in cognitive neuroscience
research). Now an additional question arises – with respect to
what environment is optimization evaluated? Since we are
working a level down from the whole mechanism, one might think
that the relevant environment is the internal environment of the
local component (comprising other neural components). But this
seems not to be the strategy in the research J&L cite (Beck et al.
2008; Wilder et al. 2009). Rather, optimization is still with respect
to the task the agent performs. In Beck et al.’s account, a brain
region (lateral intraparietal cortex: LIP) is presented as computing
a Bayesian probability. This directly links the Bayesian account to
parts of the mechanism, but if this approach is to be generalized,
it requires that one find brain components that are computing Baye-
sian probabilities in each instance one applies a Bayesian analysis.

Although we find the prospect of integrating mechanistic and
Bayesian approaches attractive, we are unclear how the results
of mechanistic decomposition – which often leave the agent-
level representations behind to explain how they are realized
through a mechanism’s parts and operations characterized in a
different vocabulary than that which characterizes the agent’s
beliefs – are to be incorporated into a Bayesian account. We
suspect that the most promising strategy is more indirect: Mechan-
istic research at lower levels of organization helps constrain the
account of knowledge possessed by the agent, and Bayesian infer-
ence then applies to such agent-level representations.

A further challenge for understanding how mechanism fits into
Bayesian analysis stems from the fact that Bayesian analyses are
designed to elicit optimal hypotheses. As J&L note, mechanisms,
especially when they evolve through descent with modification,
are seldom optimal. What then is the point of integrating
mechanistic accounts into normative Bayesian models? One
possibility is that the normative accounts serve as discovery heur-
istics – mismatches between the normative model and cognitive
agents’ actual behavior motivate hypotheses as to features of the
mechanism that account for their limitations. While this is plaus-
ible, we wonder about its advantages over investigating the
nature of the mechanism more directly, by studying its current
form or by examining how it evolved through a process of
descent with modification. Often, understanding descent
reveals how biological mechanisms have been kludged to
perform a function satisfactorily but far from optimally.

What the Bayesian framework has contributed
to understanding cognition: Causal learning
as a case study
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Abstract: The field of causal learning and reasoning (largely overlooked
in the target article) provides an illuminating case study of how the
modern Bayesian framework has deepened theoretical understanding,
resolved long-standing controversies, and guided development of new
and more principled algorithmic models. This progress was guided in
large part by the systematic formulation and empirical comparison of
multiple alternative Bayesian models.

Jones & Love (J&L) raise the specter of Bayesian Fundamentalism
sweeping through cognitive science, isolating it from algorithmic
models and neuroscience, ushering in a Dark Ages dominated
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by an unholy marriage of radical behaviorism with evolutionary
“just so” stories. While we agree that a critical assessment of the
Bayesian framework for cognition could be salutary, the target
article suffers from a serious imbalance: long on speculation
grounded in murky metaphors, short on discussion of actual appli-
cations of the Bayesian framework to modeling of cognitive pro-
cesses. Our commentary aims to redress that imbalance.

The target article virtually ignores the topic of causal inference
(citing only Griffiths & Tenenbaum 2009). This omission is odd,
as causal inference is both a core cognitive process and one of the
most prominent research areas in which modern Bayesian
models have been applied. To quote a recent article by
Holyoak and Cheng in Annual Review of Psychology, “The
most important methodological advance in the past decade in
psychological work on causal learning has been the introduction
of Bayesian inference to causal inference. This began with the
work of Griffiths & Tenenbaum (2005, 2009; Tenenbaum & Grif-
fiths 2001; see also Waldmann & Martignon 1998)” (Holyoak &
Cheng 2011, pp. 142–43). Here we recap how and why the
Bayesian framework has had its impact.

Earlier, Pearl’s (1988) concept of “causal Bayes nets” had
inspired the hypothesis that people learn causal models
(Waldmann & Holyoak 1992), and it had been argued that causal
induction is fundamentally rational (the power PC [probabilistic
contrast] theory of Cheng 1997). However, for about a quarter
century, the view that people infer cause-effect relations from
non-causal contingency data in a fundamentally rational fashion
was pitted against a host of alternatives based either on heuristics
and biases (e.g., Schustack & Sternberg 1981) or on associative
learning models, most notably Rescorla and Wagner’s (1972) learn-
ing rule (e.g., Shanks & Dickinson 1987). A decisive resolution of
this debate proved to be elusive in part because none of the com-
peting models provided a principled account of how uncertainty
influences human causal judgments (Cheng & Holyoak 1995).

J&L assert that, “Taken as a psychological theory, the Bayesian
framework does not have much to say” (sect. 2.2, para. 3). In fact,
the Bayesian framework says that the assessment of causal
strength should not be based simply on a point estimate, as had
previously been assumed, but on a probability distribution that
explicitly quantifies the uncertainty associated with the estimate.
It also says that causal judgments should depend jointly on prior
knowledge and the likelihoods of the observed data. Griffiths and
Tenenbaum (2005) made the critical contribution of showing that
different likelihood functions are derived from the different
assumptions about cause-effect representations postulated by
the power PC theory versus associative learning theory. Both the-
ories can be formulated within a common Bayesian framework,
with each being granted exactly the same basis for representing
uncertainty about causal strength. Hence, a comparison of
these two Bayesian models can help identify the fundamental
representations underlying human causal inference.

A persistent complaint that J&L direct at Bayesian modeling is
that, “Comparing multiple Bayesian models of the same task is
rare” (target article, Abstract); “[i]t is extremely rare to find a com-
parison among alternative Bayesian models of the same task to
determine which is most consistent with empirical data” (sect. 1,
para. 6). One of J&L’s concluding admonishments is that, “there
are generally many Bayesian models of any task. . . . Comparison
among alternative models would potentially reveal a great deal”
(sect. 7, para. 2). But as the work of Griffiths and Tenenbaum
(2005) exemplifies, a basis for comparison of multiple models is
exactly what the Bayesian framework provided to the field of
causal learning.

Lu et al. (2008b) carried the project a step further, implement-
ing and testing a 2�2 design of Bayesian models of learning causal
strength: the two likelihood functions crossed with two priors
(uninformative vs. a preference for sparse and strong causes).
When compared to human data, model comparisons established
that human causal learning is better explained by the assumptions
underlying the power PC theory, rather than by those underlying

associative models. The sparse-and-strong prior accounted for
subtle interactions involving generative and preventive causes
that could not be explained by uninformative priors.

J&L acknowledge that, “An important argument in favor of
rational over mechanistic modeling is that the proliferation of
mechanistic modeling approaches over the past several decades
has led to a state of disorganization” (sect. 4.1, para. 2).
Perhaps no field better exemplified this state of affairs than
causal learning, which had produced roughly 40 algorithmic
models by a recent count (Hattori & Oaksford 2007). Almost
all of these are non-normative, defined (following Perales &
Shanks 2007) as not derived from a well-specified computational
analysis of the goals of causal learning. Lu et al. (2008b) com-
pared their Bayesian models to those which Perales and Shanks
had tested in a large meta-analysis. The Bayesian extensions of
the power PC theory (with zero or one parameter) accounted
for up to 92% of the variance, performing at least as well as the
most successful non-normative model (with four free par-
ameters), and much better than the Rescorla-Wagner model
(see also Griffiths & Tenenbaum 2009).

New Bayesian models of causal learning have thus built upon and
significantly extended previous proposals (e.g., the power PC
theory), and have in turn been extended to completely new areas.
For example, the Bayesian power PC theory has been applied to
analogical inferences based on a single example (Holyoak et al.
2010). Rather than blindly applying some single privileged Bayesian
theory, alternative models have been systematically formulated and
compared to human data. Rather than preempting algorithmic
models, the advances in Bayesian modeling have inspired new
algorithmic models of sequential causal learning, addressing
phenomena related to learning curves and trial order (Daw et al.
2007; Kruschke 2006; Lu et al. 2008a). Efforts are under way to
link computation-level theory with algorithmic and neuroscientific
models. In short, rather than monolithic Bayesian Fundamentalism,
normal science holds sway. Perhaps J&L will happily (if belatedly)
acknowledge the past decade of work on causal learning as a shining
example of “Bayesian Enlightenment.”

Come down from the clouds: Grounding
Bayesian insights in developmental
and behavioral processes
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Abstract: According to Jones & Love (J&L), Bayesian theories are too
often isolated from other theories and behavioral processes. Here, we
highlight examples of two types of isolation from the field of word
learning. Specifically, Bayesian theories ignore emergence, critical to
development theory, and have not probed the behavioral details of
several key phenomena, such as the “suspicious coincidence” effect.

A central failing of the “Bayesian Fundamentalist” perspective, as
described by Jones & Love (J&L), is its isolation from other
theoretical accounts and the rich tradition of empirical work in
psychology. Bayesian fundamentalists examine phenomena
exclusively at the computational level. This limits contact with
other theoretical advances, diminishing the relevance and
impact of Bayesian models. This also limits Bayesians’ concern
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with the processes that underlie human performance. We expand
upon the consequences of these senses of isolation within the
context of word learning research.

One of the most striking shortcomings of Bayesian word learn-
ing approaches is a lack of integration with developmental theory.
J&L put this quite starkly: In the Bayesian perspective, “Nothing
develops” (see sect. 5.4). We agree, but believe that this would be
more aptly put as, “Nothing emerges.” Why? Emergence – the
coalescing of useful complexity out of simple inputs – is a key
element of any developmental theory and a key concept in
modern theories of word learning (see Smith 2000). Without
emergence, existing knowledge can only be shuffled around or
re-weighted; no qualitatively new psychological progress can be
made (see Smith & Thelen 2003; Spencer et al. 2009).

Critically, Bayesian models leave no room for emergence in
their hypothesis space, the priors, or the Bayes’ rule itself.
Recent approaches using hierarchical Bayesian models (HBMs)
show an impressive ability to discover structure in data (e.g.,
Tenenbaum et al. 2011), giving a surface feel of emergence.
However, because this ability rests on the modeler building in
multiple hypothesis spaces and priors in advance, it is not
deeply emergent. These models do not build something new
that was not there before (see Spencer & Perone 2008).

Bayesian disregard for emergence and development is clearly
seen in the Kemp et al. (2007) model of the shape bias discussed
by J&L. This model does not add any quantitative or predictive
value over Smith and colleagues’ earlier alternatives (Smith
et al. 2002). Indeed, by modeling children’s behavior with
static hypotheses about word meanings, they failed to capture
the Smith group’s crucial arguments about the emergence of
this word learning bias. In effect, Kemp et al. presented a
model of the phenomenon but without the development. This
is not forward theoretical progress.

A second shortcoming of the Bayesian perspective is a failure
to probe the inner workings of empirical phenomena in greater
than a computational level of detail. Our recent work in the
area of word learning does exactly this and reveals severe limit-
ations of Bayesian interpretations.

In one set of experiments, we have demonstrated that a well-
known Bayesian phenomenon – the suspicious coincidence (Xu
& Tenenbaum 2007b) – falls apart when several key empirical
details are manipulated. The “suspicious coincidence” refers to
adults’ and children’s more narrow interpretation of a word
when taught using multiple, identical exemplars than when

taught with a single exemplar. Spencer et al. (2011) showed
that when the multiple exemplars are presented sequentially
rather than simultaneously – as is the case in many real-world
learning situations – adults no longer show a suspicious coinci-
dence effect. This result has no specific contact to the concepts
used in the Bayesian model, yet it intuitively maps onto concepts
with a rich history in psychology: Simultaneous presentations
encourage multiple comparisons over objects, leading to an
emphasis on specific featural details, while sequential presenta-
tions afford a more global interpretation of similarity (see,
e.g., Samuelson et al. 2009). Clearly, a theoretical account of
the suspicious coincidence must address such facts.

In a separate experiment, we replicated the suspicious coinci-
dence effect with 31

2- to 5-year-old children when exemplars were
labeled three times. When, however, we increased the number of
labeling events, children no longer showed a suspicious coinci-
dence effect (Jenkins et al., in press). Once again, this manipu-
lation falls outside the scope of the concepts used in the
Bayesian model, but it is a factor that most theories of word learn-
ing and categorization would naturally consider. And, critically,
children’s performance is robustly modulated by such details.

Xu and Tenenbaum (2007b) also neglected to probe the details
of the knowledge children bring to the word learning task (in
Bayesian terms, their hypothesis spaces and priors). Instead of
measuring knowledge directly, Xu and Tenenbaum substituted
adult data from a separate adult experiment. By contrast, we
gathered data from children by using a table-top similarity
ratings task (Perry et al., in preparation; see also, Goldstone
1994). Results showed dramatic, qualitative differences in the
structure of children’s and adults’ category knowledge. More-
over, children with above-median prior knowledge of the
object categories, as measured by parental report, failed to
show a suspicious coincidence effect, whereas below-median
children showed a strong suspicious coincidence effect. This is
the opposite of what Bayesian models predict.

One empirical detail of the suspicious coincidence that Bayesians
have probed is its dependence on whether exemplars are chosen by
a knowledgeable teacher. Bayesians claim a sample is representa-
tive to word learners if it is chosen by a knowledgeable teacher
but potentially biased, and therefore less informative, otherwise
(Xu & Tenenbaum 2007a). We attempted – and failed – to repli-
cate the behavioral evidence supporting this dependence. Xu and
Tenenbaum found a striking difference between teacher-informed
adults (“teacher-driven” in Figure 1A) and adults who partially

Figure 1 (Jenkins et al.). Replication attempt by Xu and Tenenbaum (2007a). A: Xu and Tenenbaum’s results. B: Our exact replication
attempt.
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chose their own exemplars (“learner-driven” in Figure 1A). Our
adult subjects showed no such effect (Figure 1B). It is possible
that the Xu and Tenenbaum data were influenced by the low
number of participants (N ¼ 14 in Figure 1A; N ¼ 20 in
Figure 1B).

The foregoing examples demonstrate a general fragility of one
prominent line of Bayesian word learning research. We believe
this fragility to be both a characteristic and direct consequence
of the Bayesian tendency to isolate theory from the details of
mechanism and process.

In summary, we concur with J&L that there are serious limit-
ations in the Bayesian perspective. Greater integration with other
theoretical concepts in psychology, particularly in developmental
science, and a grounded link to the details of human performance
are needed to justify the continued excitement surrounding this
approach.

In praise of Ecumenical Bayes
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Abstract: Jones & Love (J&L) should have given more attention to
Agnostic uses of Bayesian methods for the statistical analysis of models
and data. Reliance on the frequentist analysis of Bayesian models has
retarded their development and prevented their full evaluation. The
Ecumenical integration of Bayesian statistics to analyze Bayesian
models offers a better way to test their inferential and predictive
capabilities.

In the target article, Jones & Love (J&L) argue that using Baye-
sian statistics as a theoretical metaphor for the mind is useful but,
like all metaphors, limited. I think that is a sensible position.
Bayesian methods afford a complete and coherent solution to
the problem of drawing inferences over structured models
from sparse and noisy data. That seems like a central challenge
faced by the mind, and so it is not surprising the metaphor has
led to insightful models of human cognition. But it will never
be the only useful metaphor.

I certainly agree with the target article that using Bayesian
methods as a statistical framework – that is, as a means to
connect models of cognition with data – is the right thing to do
(Lee 2008; 2011). This “Agnostic” approach is not discussed
much in the target article, which focuses on “Fundamentalist”
uses of Bayes as a theoretical metaphor. The argument is that
Fundamentalist approaches can lead to Enlightenment through
reintegrating processes and representations into Bayesian cogni-
tive models.

What I think is missing from this analysis is the central role of
Agnostic Bayes on the path to enlightenment. I think Bayesian
models of cognition, including potentially more process and rep-
resentation rich ones, need to use Bayesian methods of analysis if
they are to realize their full potential. The target article does not
say very much about the Bayesian analysis of Bayesian models. It
does sound favorably disposed when discussing the need to
evaluate the complexity of cognitive models, which is a natural
property of Bayesian model selection. But the argument for
Bayesian statistical analysis is never made as forcefully as it
should be.

Using Bayesian statistics to analyze Bayesian models might be
called “Ecumenical” Bayes, since it integrates the two uses of
Bayesian methods in studying human cognition. As best
I know, there are very few examples of this integrative approach

(e.g., Huszar et al. 2010; Lee & Sarnecka 2010; in press). But
I think it is theoretically and practically important.

It has always struck me (e.g., Lee 2010; 2011), and others (e.g.,
Kruschke 2010) that there is a sharp irony in many papers pre-
senting Bayesian models of cognition. Often the rationality of
Bayesian inference is emphasized when discussing how people
might make optimal use of available information. But, when
the authors want to test their model against data, and hence
face the same inferential problem, the solution is suddenly differ-
ent. Now they revert to irrational statistical methods, like fre-
quentist estimation and null hypothesis tests, to draw
conclusions about their model.

This complaint is not just statistical nit-picking. Non-Bayesian
analysis has retarded the development of Bayesian models of cog-
nition, by limiting the sorts of Bayesian models that can be con-
sidered, and the depth to which they have been understood and
used.

I think it is possible to illustrate this claim by using Lee and
Sarnecka’s (2010; in press) work on modeling children’s develop-
ment of number concepts. The target article is dismissive of this
work, saying it is done “at the expense of identifying general
mechanisms and architectural characteristics . . . that are appli-
cable across a number of tasks” (sect. 5, para. 5). This is a
strange critique, since the main point of Lee and Sarnecka
(2010; in press) is to argue for specific types of constrained rep-
resentations, in the form of knower-levels, and show how those
representations explain observed behavior on multiple tasks.
But, that confusion aside, I want to use the work as an example
of the benefits of using Bayesian statistics to analyze Bayesian
models.

A key part of Lee and Sarnecka’s (2010; in press) model is a
base rate for behavioral responses, which corresponds to the
child’s prior. It is a probability distribution over the numbers
0 to 15, and is difficult to handle with frequentist estimation. If
the model were being analyzed in the manner usually adopted
to evaluate Bayesian cognitive models, my guess is the following
would have been done. The base-rate prior would have been
hand-tuned to a reasonable set of values, and the model would
have been used to generate behavior. These “predictions”
would then have been compared to experimental data, perhaps
accompanied by a simple summary statistic measuring the agree-
ment, and compared to “straw” models that, for example, did not
have base-rate priors. The conclusion would have been drawn
that the Bayesian machinery had the right properties to explain
key patterns in data showing how children acquire number
concepts.

I find this sort of approach unsatisfying. One of the main
reasons for developing sophisticated models of cognition, like
Bayesian models, is to be able to draw inferences from data,
and make predictions and generalization to future and different
situations. A high-level demonstration that a model is, in prin-
ciple, capable of generating the right sorts of behavioral patterns
falls a long way short of best-practice model-based empirical
science.

What Lee and Sarnecka (2010; in press) were able to do, using
Bayesian instead of frequentist statistical methods, was infer the
base-rate prior from behavioral data, together with all of the
other psychological variables in the model. This is a much
more mature application of Bayesian modeling, because it
makes full contact with the data. It allows the descriptive and pre-
dictive adequacy of the model to be assessed (e.g., through stan-
dard posterior predictive analysis). It allows the Bayesian model
to be used to learn about parameters from data, since it gives the
full joint posterior distribution over the (complicated) parameter
space. And it enables the same representational model to be
applied to data from multiple developmental tasks simul-
taneously, within a hierarchical framework.

I think these sorts of Bayesian statistical capabilities have the
potential to address many of the concerns raised by the target
article about the currently demonstrated success of Bayesian
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models of cognition. Bayesian statistical methods are important,
useful, and should play a central role in analyzing all models of
cognition, including Bayesian ones. The target article views this
as a side issue, but I think it is a fundamental element of the
path to enlightenment.

Cognitive systems optimize energy
rather than information
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Abstract: Cognitive models focus on information and the computational
manipulation of information. Rational models optimize the function that
relates the input of a process to the output. In contrast, efficient
algorithms minimize the computational cost of processing in terms of
time. Minimizing time is a better criterion for normative models,
because it reflects the energy costs of a physical system.

Two parallel developments in the 1940s set the stage both for the
cognitive revolution of the 1950s and for the discussion presented
in the target article. The development of information theory
explored ways to characterize the information content of a
message and ways to consider how to best pass messages
(Shannon 1949). At the same time, the architecture for digital
computing led to advances in discrete mathematics that facili-
tated the analysis of the efficiency of algorithms (Turing 1950).

One consequence of the cognitive revolution was that that it
became common to characterize the mind as a computational
device. Thus, researchers began to formulate theories of
mental processes in computational terms. As Marr (1982)
points out, a process can be defined at either a computational
level or an algorithmic level of description. At the computational
level, the process is defined by a mapping between information
available at the start and end of the process. For example, Ander-
son (1990) advocates a Bayesian, “rational-level” analysis of the
information relationship between inputs and outputs of a
system. At the algorithmic level, a process is specified in terms
of a set of steps that implements this computational-level descrip-
tion. Any given algorithm can be analyzed for its efficiency in
time. The efficiency of a cognitive process can be established at
either the computational level of description or at the algorithmic
level. The Bayesian approaches described in the target article are
focused on defining the optimality of a cognitive process at the
computational level (Anderson 1990; Tenenbaum & Griffiths
2001). Anderson (1990) does point out that computational costs
can also play a role in determining a rational model, but, in prac-
tice, these considerations did not have a significant influence on
the structure of his rational models.

The danger in casting optimality purely at the computational
level is that human cognition is implemented by a physical
system. Indeed, it has been proposed that any characterization
of the optimality of actions or beliefs should take into account
the resource-limited nature of the human cognitive apparatus
(Cherniak 1986; Stanovich & West 1998). As the target article
points out, the brain consumes a significant amount of energy.
Thus, energy minimization is likely to be an important constraint
on cognitive processing.

The idea that energy-minimization is an important constraint
on cognitive processing is implicit in the focus on efficient com-
putational procedures. We do not suppose that the metabolic
cost of cognition is completely invariant of the type of thinking
that people are engaged in, but marginal changes in metabolic

rates attributed to different types of cognition pale in comparison
to the metabolic cost of simply keeping the brain running. Thus,
the time taken by a process is a good proxy for energy conserva-
tion. On this view, for example, habits minimize energy, because
they allow a complex behavior to be carried out quickly (e.g.,
Logan 1988; Schneider & Shiffrin 1977).

Of course, effort-minimization is not the only constraint on
cognitive processing. It is crucial that a process be carried out
to a degree sufficient to solve the problem faced by the individ-
ual. This view was central to Simon’s (1957b) concept of satisfi-
cing. This view suggested that cognitive processes aim to
expend the minimal amount of effort required to solve a
problem. On this view, the costs of additional effort outweigh
the gains in decision accuracy. This idea was elaborated in the
effort accuracy framework developed by Payne et al. (1993).
Their work examined the variety of strategies that people
utilize in order to balance decision accuracy with effort – the
cognitive costs of gathering and integrating information about
choice attributes – in decision-making. Payne et al. point out
that these strategies differ both in the effort required to carry
them out as well as in their likelihood of returning an accurate
response. People negotiate the trade-off between effort and accu-
racy by selecting decision strategies that minimize the effort
required to yield an acceptable outcome from a choice.

A key shortcoming, then, of the Bayesian Fundamentalist
approach is that it optimizes the wrong thing. The ideal observer
or actor defined purely in terms of information is quite useful,
but primarily as a point of comparison against human cognitive
or sensory abilities rather than as a statement of what is
optimal as a cognitive process (e.g., Geisler 1989). A definition
of optimal behavior needs to take energy minimization into
account. Thus, the key limitation of Bayesian Fundamentalism
is that it focuses selectively on optimality of information proces-
sing rather than on the combination of information and time.

Enlightenment grows from fundamentals
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Abstract: Jones & Love (J&L) contend that the Bayesian approach
should integrate process constraints with abstract computational
analysis. We agree, but argue that the fundamentalist/enlightened
dichotomy is a false one: Enlightened research is deeply intertwined
with – and to a large extent is impossible without – the basic,
fundamental work upon which it is based.

Should Bayesian researchers focus on “enlightened” modelling
that seriously considers the interplay between rational and
mechanistic accounts of cognition, rather than a “fundamentalist”
approach that restricts itself to rational accounts only? Like many
scientists, we see great promise in the “enlightened” research
program. We argue, however, that enlightened Bayesianism is
deeply reliant on research into Bayesian fundamentals, and the
fundamentals cannot be abandoned without greatly affecting
more enlightened work. Without solid fundamental work to
extend, enlightened research will be far more difficult.

To illustrate this, consider the paper by Sanborn et al. (2010a),
which Jones & Love (J&L) consider to be “enlightened” as it
seeks to adapt an ideal Bayesian model to incorporate insights
about psychological process. To achieve this, however, it relies
heavily upon work that itself would not have counted as
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“enlightened.” The comparison between Gibbs sampling and
particle filtering as rival process models grew from “unenligh-
tened” research that used these algorithms purely as methodo-
logical tools. As such, without this “fundamentalist” work the
enlightened paper simply would not have been written.

Enlightened research can depend on fundamentals in other
ways. Rather than adapt an existing Bayesian model to incorpor-
ate process constraints, Navarro and Perfors (2011) used both
Bayesian fundamentals (an abstract hypothesis space) and
process fundamentals (capacity limitations on working memory)
as the foundations of an analysis of human hypothesis testing.
Identifying a conditionally optimal learning strategy, given the
process constraint, turned out to reproduce the “positive test
strategy” that people typically employ (Wason 1960), but only
under certain assumptions about what kinds of hypotheses are
allowed to form the abstract hypothesis space. This analysis,
which extended existing work (Klayman & Ha 1987; Oaksford
& Chater 1994) and led us to new insights about what kinds of
hypotheses human learners “should” entertain, could not have
been done without “fundamentalist” research into both the stat-
istical and the mechanistic basis of human learning.

Not only do “enlightened” papers depend on fundamental ones,
we suggest that they are a natural outgrowth of those papers. Con-
sider the early work on Bayesian concept learning, which con-
tained a tension between the “weak sampling” assumption of
Shepard (1987) and the “strong sampling” assumption of Tenen-
baum and Griffiths (2001). When strong sampling was introduced,
it would presumably have counted as “fundamentalism,” since the
2001 paper contains very little by way of empirical data or con-
sideration of the sampling structure of natural environments.
Nevertheless, it served as a foundation for later papers that dis-
cussed exactly those issues. For instance, Xu and Tenenbaum
(2007a) looked at how human learning is shaped by explicit
changes to the sampling model. This in turn led Navarro et al.
(in press) to propose a more general class of sampling models,
and to pit them all against one another in an empirical test. (It
turned out that there are quite strong individual differences in
what people use as their “default” sampling assumption.) The
change over time is instructive: What we observe is a gradual
shift from simpler “fundamentalist” papers that develop the
theory in a reduced form, towards a richer framework that
begins to capture the subtleties of the psychology in play.

Even J&L’s own chosen examples show the same pattern. Con-
sider the Kemp et al. (2007) article, which J&L cite as a prime
example of “fundamentalist” Bayesianism, since it introduces no
new data and covers similar ground to previous connectionist
models (Colunga & Smith 2005). Viewing the paper in isolation,
we might agree that the value added is minor. But the framework
it introduced has been a valuable tool for subsequent research. An
extension of the model has been used to investigate how adults
learn to perform abstract “second order” generalizations (Perfors
& Tenenbaum 2009) and to address long-debated issues in verb
learning (Perfors et al. 2010). A related model has even been
used to investigate process-level constraints; Perfors (in press)
uses it to investigate whether or not memory limitations can
produce a “less is more” effect in language acquisition. It is from
the basic, fundamental research performed by Kemp et al.
(2007) that these richer, more enlightened projects have grown.

Viewed more broadly, the principle of “enlightenment growing
from fundamentals” is applicable beyond Bayesian modelling;
our last example is therefore an inversion. We suggest that J&L
understate the importance of computational considerations in
good process modelling. For instance, one of their key examples
comes from Sakamoto et al. (2008), who consider mechanistic
models of category learning. That paper might be characterized
as a “fundamentalist” work in process modelling, insofar as it
gives no consideration to the computational level issues that
pertain to their choice of learning problem. As consequence of
this “process fundamentalism,” the “rational” model that paper
employs is not actually a rational model. It is highly mis-specified

for the problem of learning time-inhomogeneous categories. In
recent work (Navarro & Perfors 2009), we discuss this concern
and introduce extensions to the experimental framework aimed
at highlighting the computational considerations involved; at
present, we are working on model development to build on
this. However, the goal in our work is not to deny the importance
of process, but to learn which aspects of human behaviour are
attributable to computational level issues and which aspects
reflect process limitations. In this case, that goal is met by build-
ing on fundamental work on the process level (i.e., Sakamoto
et al.’s 2008 paper) and adding computational considerations.
In general, attaining the goal of “enlightened” research is possible
only if fundamentals on both levels are taken seriously – if
researchers deny neither psychological mechanism nor ideal
computation.

Like J&L, we believe that it is the interaction between the twin
considerations of computation and process that leads us to learn
about the mind. However, this should not lead us to abandon
work that focuses on only one of these two components. Enligh-
tened research is constructed from the building blocks that fun-
damental work provides.

The illusion of mechanism: Mechanistic
fundamentalism or enlightenment?
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Abstract: Rather than worrying about Bayesian Fundamentalists, I
suggest that our real concern should be with Mechanistic
Fundamentalists; that is, those who believe that concrete, but frequently
untestable mechanisms, should be at the heart of all cognitive theories.

Jones & Love (J&L) suggest that we should reject Bayesian Fun-
damentalism in favour of Bayesian Enlightenment, thus combin-
ing Bayesian analysis with mechanistic-level models. This raises
two questions: Who are these Bayesian Fundamentalists and
what is a mechanistic-level model?

First, let us go in search of Bayesian Fundamentalists. As I
read the target article, I began to wonder how it could be that
I’d never encountered a Bayesian Fundamentalist. If these
ideas are so pervasive, then surely J&L could quote at least one
author who has made a clear statement of the Bayesian Funda-
mentalist programme? From the first line of the abstract it
appears that the main proponent of Bayesian Fundamentalism
must be Anderson (1990) with his Rational Analysis framework,
and his suggestion that behaviour can often be explained by
assuming that it is optimally adapted to its purpose and the
environment. In criticising rational analysis, J&L argue that
“Rather than the globally optimal design winning out, often a
locally optimal solution . . . prevails. . . . Such non-behavioral
factors are enormously important to the optimization process,
but are not reflected in rational analyses, as these factors are
tied to a notion of mechanism, which is absent in rational ana-
lyses” (sect. 5.3, paras. 3 and 5).

A similar concern about the limitations of rational analysis can
be found in the following quotation: “My guess is that short-term
memory limitations do not have a rational explanation. . . . [T]hey
reflect the human trapped on some local optimum of evolution”
(Anderson 1990, pp. 91–92). These cautionary words on the
dangers of relying entirely on rational explanations were
written by the arch-Fundamentalist himself. Is there really a
difference, then, between these two positions?
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Let’s now move on to the second question: What is a mechan-
istic-level model? If we need to develop mechanistic models,
then we need to know what such entities might look like.
Nowhere do J&L define what they mean by a mechanistic-level
theory. Perhaps we can get some clues from their other writings.
Sakamoto et al. (2008) describe a “mechanistic model that prin-
cipally differs from the aforementioned rational models in that
the mechanistic model does not have perfect memory for the
training items” (p. 1059). But here the mechanism is simply a
specification of the computations that the model performs.
That is, although the model is not as abstract as Marr’s (1982)
computational level, it is not as concrete as his algorithmic
level, and certainly says nothing about implementation.

One might call this a process model, or a functional-level expla-
nation. It specifies the functions, computations, and processes in
a way that allows the model to be implemented as a computer
program and to simulate behavioural data. The program per-
forming the simulations must compute mathematical functions
such as square roots, but presumably the exact algorithm or
implementation used to compute a square root is not part of
the theory. If this kind of functional explanation is indeed what
J&L mean by a mechanistic theory, then I am wholeheartedly
in favour of their approach. But I am not entirely sure that this
is exactly what they have in mind. Elsewhere they talk about
mechanistic issues “of representation, timing, capacity,
anatomy, and pathology” (sect. 4.1, para. 3). If this is simply to
echo Marr in wishing to bring together multiple levels of descrip-
tion and explanation, then few would disagree. However, I worry
that J&L may be encouraging Mechanistic Fundamentalism: the
belief that a good cognitive theory must do more than just
describe processes and computations, and must also specify con-
crete mechanisms in terms of mechanical components such as
nodes, activations, weights, and buffers. This view easily leads
to the illusion of mechanism, whereby the mechanisms are mis-
taken for explanations.

Let’s illustrate this by considering interactive activation net-
works, which are still at the core of many contemporary
models. In these networks the activation of each node increases
as a result of weighted input, and decreases as a result of inhi-
bition from competing nodes. Activations roughly reflect the evi-
dence for each node or hypothesis as a proportion of the evidence
for all hypotheses. Although it is hard to specify exactly what
computational function such networks perform, the general prin-
ciple seems very much like Bayes’ theorem. However, for many
psychologists the network model is to be preferred over a Baye-
sian explanation because the former seems to say something
about mechanism. But this is the illusion of mechanism. Unless
the precise implementation of the network is intended as a theor-
etical claim about how processes are implemented in the brain,
the mechanism itself makes no contribution to the explanation.
If it happened to be the case that the data could be fit by any
“mechanism” that could compute Bayes’ theorem, then the
explanation would be that the system behaves in an approxi-
mately optimal manner.

This immediately raises the problem of model equivalence.
Unless candidate mechanisms produce testably different beha-
viours, the implementational details are not part of the expla-
nation. To quote yet again from Anderson (1990), “If two
theorists propose two sets of mechanisms in two architectures
that compute the same function, then they are proposing the
same theory” (p. 26). One might protest that at least when study-
ing the mind and the brain, there will always be some neurobio-
logical data that could definitively distinguish between alternative
mechanisms. Even ignoring the fact that such a view would imply
that there is no distinctly psychological level of explanation, in
practice such optimism is misplaced. Even the most productive
cognitive theories rarely make any definitive commitment to
implementational details. Again, this is apparent in connectionist
models based on artificial neurons whose properties bear little
resemblance to real neurons. But connectionist modellers are

fully aware of this deliberate limitation, and it is hard to see
that any of the insights from connectionist modelling are under-
mined by this simplification.

In conclusion, then, I suggest that most Bayesians are already
enlightened; it is the Mechanistic Fundamentalists we should
worry about.

Reverse engineering the structure
of cognitive mechanisms
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Abstract: Describing a cognitive system at a mechanistic level requires
an engineering task analysis. This involves identifying the task and
developing models of possible solutions. Evolutionary psychology and
Bayesian modeling make complimentary contributions: Evolutionary
psychology suggests the types of tasks that human brains were designed
to solve, while Bayesian modeling provides a rigorous description of
possible computational solutions to such problems.

Because of their mathematical formalism, Bayesian models of
cognition have the potential to infuse greater rigor into psycho-
logical models of how the mind works. Any theoretical framework
committed to specifying (1) the class of cues that a mechanism is
a sensitive to, (2) the operations it performs in response to those
cues, and (3) the resultant outputs, is to be heartily welcomed
into the theoretical toolbox of psychology.

Jones & Love (J&L) argue that, to be successful, Bayesian
modelers should increase their focus on a mechanistic level of
analysis, and use the examples of behaviorism and evolutionary
psychology to warn them against the pitfalls of theoretical
approaches that ignore psychological mechanisms and instead
move directly from behavior to the environment. In the case of
evolutionary psychology, this critique is simply mistaken. In
fact, the field was founded specifically in response to previous
evolutionary approaches, such as ethology, that ignored this
middle level of analysis (e.g., Cosmides & Tooby 1987). The
goal of evolutionary psychology is the same as any branch of cog-
nitive science: to describe the information-processing structure
of psychological mechanisms. What is distinct about evolutionary
psychology is that principles of natural selection are used to
predict the structure of cognitive mechanisms. These models
generate testable predictions that can be adjudicated by empiri-
cal data.

The history of psychology suggests that well-specified task ana-
lyses (Marr 1982) are the most tractable way of reverse engineer-
ing the structure of cognitive mechanisms. As J&L discuss, the
challenge for any psychologist is to (1) identify the task being
solved, and (2) develop models of possible solutions. Through
this lens, evolutionary psychology and Bayesian modeling make
complimentary contributions. Evolutionary psychology, properly
applied, is a deductive framework for generating predictions
about the types of tasks cognitive mechanisms were designed
to solve. This constrains the possibility space for the structure
of a cognitive mechanism – what class of cues mechanisms are
likely to use and what their resultant output and criterion for
success should be. It rests on the premise that natural selection
builds deterministic cognitive mechanisms that take as inputs
aspects of the world that were invariant over phylogenetic time
and generate outputs that would have led to the intergenera-
tional differential reproduction of such systems. It is therefore
a way to deductively generate hypotheses about the existence
of previously unknown cognitive mechanisms. What evolutionary
psychology is not – even in principle – is a description of any
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particular engineering solution. In contrast, Bayesian modeling is
a description of an engineering solution: Cognitive mechanisms
whose function requires holding and updating probabilities will
– constraints aside – behave according to Bayes’ theorem. What
Bayesian modeling is not – even in principle – is a way to gener-
ate hypotheses or predictions about the range of cues cognitive
systems use and their criteria for success.

Natural selection builds cognitive mechanisms around phylo-

genetic invariances. Organisms’ cognitive mechanisms reflect the
dynamics of multiple generations of individuals interacting with
recurrent features of the natural environment (i.e., phylogenetic
dynamics not visible within an individual lifetime). For example,
after copulation with a female, a male house mouse will commit
infanticide on any pups born for the duration of the typical
mouse gestational period, after which point they will rear any
pups born; manipulations demonstrated that males achieve this
by tracking the number of light/dark cycles (Perrigo et al. 1991;
1992). The cognitive mechanisms in the male mouse that
mediate this relationship between light/dark cycles and killing
versus caring behaviors are a result of the dynamics of differential
reproductive success over multiple generations. Invariant relation-
ships in the world – the duration of light/dark cycles in a natural
terrestrial environment, that copulation leads to offspring, the dur-
ation of gestation, and so forth – are “seen” by natural selection,
which in turn engineers biological mechanisms that instantiate
input/output relationships. In this example, not only are the
input cues based around intergenerational invariances, but the
generated outputs are those which would lead to differential
reproductive success within the context of those intergenerational
invariances (i.e., mechanisms that discriminately kill or rear pups
as a function of actuarial relatedness will do differentially better
over multiple generations than mechanisms that do not).

As this example demonstrates, differential reproductive success
(i.e., natural selection) operating over phylogenetic invariances
determines input/output relationships in cognitive systems
(see Tooby et al. [2008] for examples of using the deductive
logic of phylogenetic invariances to predict and test novel cogni-
tive mechanisms in humans). Of course, once a task is identified
and a relevant mechanism proposed, the computational structure
of that mechanism must still be described. Any one particular
computational engineering solution is not entailed by the fact
that natural selection designed a certain cognitive mechanism
– in principle, there are many possible engineering solutions.
In some cases, the computational solution to handling a particu-
lar set of invariances will be a Bayesian system. Integrating a
phylogenetic perspective (in addition to an ontogenetic one)
can provide Bayesian modelers with clear, deductive ways to
determine the hypothesis space for a computational system and
to set priors.

Going forward: Engineering task analyses. Historical accident
aside, Bayesian modeling and evolutionary psychology are not
in fact alternative approaches to understanding psychology.
Rather, both make necessary but distinct contributions to the
process of reverse engineering the mind at a mechanistic
level. We are confident that both evolutionary psychology and
Bayesian modeling could productively pool their efforts. Evol-
utionary psychology can provide the framing of task analyses
– descriptions of the problem and tasks that cognitive systems
must in principle solve. Bayesian models of cognition can
provide rigorous, mathematical descriptions of certain types
of engineering solutions. We look forward to a time when psy-
chologists choose ecologically valid task analyses and posit fully
mechanistic accounts of how the solution to those problems
could be implemented by a fully mechanistic system without
trying to shoe-horn each reverse engineering task analysis into
any common overarching meta-theoretical framework. In the
future, we hope there are no evolutionary psychologists or
Bayesian modelers, just psychologists who reverse engineer
the mind at a mechanistic level, using any and all deductive
theoretical tools at their disposal.

Taking the rationality out of probabilistic
models
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Abstract: Rational models vary in their goals and sources of justification.
While the assumptions of some are grounded in the environment, those
of others – which I label probabilistic models – are induced and so
require more traditional sources of justification, such as generalizability
to dissimilar tasks and making novel predictions. Their contribution to
scientific understanding will remain uncertain until standards of
evidence are clarified.

The Jones & Love (J&L) target article begins what is hopefully an
extended discussion of the virtues of rational models in psychol-
ogy. Such discussion is sorely needed because the recent prolifer-
ation of such models has not been accompanied by the
meta-theoretical understanding needed to appreciate their scien-
tific contribution. When rational models are presented at confer-
ences, the speaker always receives polite applause, but casual
conversation afterwards often reveals that many listeners have
little idea of how scientific understanding of the topic has been
advanced. Even the practitioners (including myself) are often
unable to fluently answer the question: “How has the field’s
understanding of the psychology of X been advanced?” This
state of affairs needs to change.

J&L’s article may help by clarifying how rational models can
vary in their purpose and source of justification. At one extreme,
there are models that fall into the “Bayesian Fundamentalism” cat-
egory and yet are not susceptible to J&L’s criticisms. One only
need look at a model as old and venerable as signal detection
theory (SDT) for an example. SDT specifies optimal behavior,
given certain assumptions about the representation of perceptual
input, priors, and a cost function. Importantly, the priors (the
probability of a signal) and costs (e.g., of a false alarm) can be
tied to features of the SDT experiment itself (for a review, see
Maloney & Zhang 2010). There are many examples of such
models in the domains of perception and action.

But the apparent target of J&L’s article are models in which
priors are assumed rather than tied to features of an experimental
(or any other) context and for which costs of incorrect decisions
are unspecified. For example, numerous models specify how one
should learn and reason with categories; that is, they assume
some sort of prior distribution over systems of mutually exclusive
categories (e.g., Kemp & Tenenbaum 2009; Sanborn et al.
2010a). But although this assumption may seem uncontroversial,
it is not. Notoriously, even biological species (the paradigmatic
example of categories) fail to conform to these assumptions, as
there are cases in which the males of one “species” can success-
fully breed with the females of another, but not vice versa (and
cases of successful breeding between As and Bs, and Bs and
Cs, but not As and Cs) (Dupre 1981). In what sense should a
model that accounts for human categorical reasoning be con-
sidered rational when its prior embodies assumptions that are
demonstrably false? Of course, the costs associated with such
ungrounded priors may be small, but models that fail to explicitly
consider costs are common. Many rational models in higher-
order cognition have this character.

My own modest proposal is that we should drop the label
“rational” for these sorts of models and call them what they
are, namely, probabilistic models. I suggest that freeing probabil-
istic models from the burden of rationality clarifies both their
virtues and obligations. Considering obligations, J&L correctly
observe that, if not grounded in the environment, justification
for a model’s priors must be found elsewhere. But the history
of science provides numerous examples of testing whether
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postulated hidden variables (e.g., priors in a probabilistic model)
exist in the world or in the head of the theorist, namely, through
converging operations (Salmon 1984). For example, one’s confi-
dence in the psychological reality of a particular prior is increased
when evidence for it is found across multiple, dissimilar tasks
(e.g., Maloney & Mamassian 2009; Rehder & Kim 2010). It is
also increased when the probabilistic model not only provides
post hoc accounts of existing data but is also used to derive and
test new predictions. For instance, the case for the psychological
reality of SDT was strengthened when perceivers responded in
predicted ways to orthogonal manipulations of stimulus intensity
and payoff structure. This is how one can treat the assumptions of
a probabilistic model as serious psychological claims and thus be
what J&L describe as an “enlightened” Bayesian.

Taking the rationality out of probabilistic models also shifts
attention to their other properties, and so clarifies for which
tasks such models are likely to be successful. By using Bayes’
law as the only rule of inference, one’s “explanation” of a psycho-
logical phenomenon, divided between process and knowledge in
classic information-processing models, is based solely on knowl-
edge (priors) instead. Said differently, one might view Bayes’ law
as supporting a programming language in which to express
models (a probabilistic analog of how theorists once exploited
the other normative model of reasoning – formal logic – by pro-
gramming in PROLOG [programming logic]; Genesereth &
Nilsson 1987). These models will succeed to the extent that
task performance is determined primarily by human reasoners’
prior experience and knowledge. Probabilistic models also help
identify variables that are likely to be critical to behavior (i.e.,
they provide an old-fashioned task analysis; Card et al. 1983);
in turn, this analysis will suggest critical ways in which people
may differ from one another. Finally, by making them susceptible
to analysis, probabilistic models are directing researchers’ atten-
tion towards entirely new sorts of behaviors that were previously
considered too complex to study systematically.

My expectation is that the analysis conducted by J&L will help
lead to an appreciation of the heterogeneity among rational/prob-
abilistic models and to clarity regarding the standards to which
each should be held. This clarity will not only help conference-
goers understand why they are clapping, it will promote the
other sorts of virtuous model testing practices that J&L advocate.
There are examples of Bayesian models being compared with com-
peting models, both Bayesian (Rehder & Burnett 2005) and non-
Bayesian ones (e.g., Kemp & Tenenbaum 2009; Rehder 2009;
Rehder & Kim 2010), but more are needed. Such activities will
help the rational movement move beyond a progressive research
program (in Lakatos’s terms; see Lakatos 1970) in which research
activities are largely confirmatory, to a more mature phase in which
the scientific contribution of such models is transparent.

Distinguishing literal from metaphorical
applications of Bayesian approaches
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Abstract: We distinguish between literal and metaphorical applications
of Bayesian models. When intended literally, an isomorphism exists
between the elements of representation assumed by the rational
analysis and the mechanism that implements the computation. Thus,
observation of the implementation can externally validate assumptions
underlying the rational analysis. In other applications, no such
isomorphism exists, so it is not clear how the assumptions that allow a
Bayesian model to fit data can be independently validated.

Jones & Love’s (J&L’s) attempt to differentiate uses of Bayesian
models is very helpful. The question is, what distinguishes the
useful tools from the “fundamentalist” applications? We think
one factor is whether Bayesian proposals are intended literally
or metaphorically, something that is not usually made explicit.
The distinction is exemplified by the different uses of Bayesian
theories in studies of vision versus concepts.

In vision, computational analyses of the statistics of natural
scenes have yielded hypotheses about representational elements
(a class of basis functions) that provide a putatively optimally effi-
cient code (Simoncelli & Olshausen 2001). The fact that neurons
in visual cortex have receptive fields that approximate these basis
functions was a major discovery (Olshausen & Field 1996). Thus,
there is a direct, rather than metaphorical, relation between a
rational hypothesis about a function of the visual system and its
neurobiological basis. It is easy to see how the firing activity of
a visual neuron might literally implement a particular basis func-
tion, and thus, how the pattern of activation over a field of such
neurons might provide an efficient code for the statistics of the
visual scene. This isomorphism is not merely coincidental.

In metaphorical applications, no such mapping exists between
the proposed function and implementation. People are assumed
to compute probability distributions over taxonomic hierarchies,
syntactic trees, directed acyclic graphs, and so on, but no theorist
believes that such distributions are directly encoded in neural
activity, which, in many cases, would be physically impossible.
For instance, Xu and Tenenbaum (2007b) have proposed that,
when learning the meaning of a word, children compute posterior
probability distributions over the set of all possible categories. If
there were only 100 different objects in a given person’s environ-
ment, the number of possible categories (2100, or ~1.27 � 1030)
would exceed the number of neurons in the human brain by
about 19 orders of magnitude. Thus, theorists working in this tra-
dition disavow any direct connection to neuroscience, identifying
the work at Marr’s computational level (Marr 1982). The idea
seems to be that, although the brain does not (and cannot) actually
compute the exact posterior probability distributions assumed by
the theory, it successfully approximates this distribution via some
unknown process. Since any method for approximating the true
posterior distribution will achieve the same function, there is no
need to figure out how the brain does it.

The problem is that this approach affords no way of externally
validating the assumptions that enable the Bayesian theory to fit
data, including assumptions about the function being carried out,
the structure of the hypothesis space, and the prior distributions.
This limitation is nontrivial. Any pattern of behavior can be consist-
ent with some rational analysis if the underlying assumptions are
unconstrained. For instance, given any pattern of behavior, one
can always work backward from Bayes’ rule to find the set of
priors that make the outcomes look rational. Thus, good fit to be-
havioral data does not validate a Bayesian model if there is no inde-
pendent motivation for the priors and other assumptions. The
strongest form of independent motivation would be external vali-
dation through some empirical observation not directly tied to
the behavior of interest, as in the vision case: Conclusions from
the rational analysis (i.e., that a particular basis function provides
an optimally efficient code, so vision must make use of such basis
functions) were validated through empirical observation of the
receptive fields of neurons in visual cortex. But this kind of external
validation is not available in cases where the mapping between the
rational analysis and neural implementation is unknown.

Much of this is familiar from earlier research on language. Baye-
sian cognitive theories are competence theories in Chomsky’s
(1965) sense. Like Chomskyan theories, they make strong a
priori commitments about what the central functions are and
how knowledge is represented, and they idealize many aspects
of performance in the service of identifying essential truths. The
links between the idealization and how it is acquired, used, or rep-
resented in the brain are left as promissory notes – still largely
unfulfilled in the case of language. But the language example
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suggests that the idealizations and simplifications that make a com-
petence (or “computational”) theory possible also create non-iso-
morphisms with more realistic characterizations of performance
and with brain mechanisms (Seidenberg & Plaut, in press). The
situation does not materially change because Bayesian theories
are nominally more concerned with how specific tasks are per-
formed; the result is merely competence theories of performance.

As J&L note in the target article, similar issues have also arisen
for connectionism over the years, with critics arguing that connec-
tionist models can be adapted to fit essentially any pattern of data.
There is a key difference, however: The connectionist framework
is intended to capture important characteristics of neural proces-
sing mechanisms, so there is at least the potential to constrain
key assumptions with data from neuroscience. This potential
may not be realized in every instantiation of a connectionist
model, and models invoking connectionist principles without con-
nection to neural processes are subject to the same concerns we
have raised about Bayesian models. But it is becoming increasingly
common to tie the development of such models to observations
from neuroscience, and this marriage has produced important
and productive research programs in memory (Norman &
O’Reilly 2003; O’Reilly & Norman 2002), language (Harm & Sei-
denberg 2004; McClelland & Patterson 2002), cognitive control
(Botvinick et al. 2001), routine sequential action (Botvinick &
Plaut 2004), and conceptual knowledge (Rogers & McClelland
2004; Rogers et al. 2004) over the past several years. Bayesian
approaches will also shed considerable light on the processes
that support human cognition in the years to come, when they
can be more closely tied to neurobiological mechanisms.

Bayesian computation and mechanism:
Theoretical pluralism drives scientific
emergence
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Abstract: The breadth-first search adopted by Bayesian researchers to
map out the conceptual space and identify what the framework can do
is beneficial for science and reflective of its collaborative and
incremental nature. Theoretical pluralism among researchers facilitates
refinement of models within various levels of analysis, which ultimately
enables effective cross-talk between different levels of analysis.

The target article by Jones & Love (J&L) is another entry to the
recent debate contrasting the merits of Bayesian and more
mechanistic modeling perspectives (e.g., Griffiths et al. 2010;
McClelland et al. 2010). Regrettably, much of this debate has
been tainted by a subtext that presupposes the approaches to
be adversarial rather than allied (see, e.g., Feldman 2010;
Kruschke 2010). J&L are correct in asserting that research
agendas pitched at different levels of analysis will investigate
different research questions that lead to different theoretical sol-
utions (e.g., Dennett 1987; Marr 1982/2010). However, any
complete psychological theory must account for phenomena at
multiple levels of analysis and, additionally, elucidate the
relations between levels (e.g., Schall 2004; Teller 1984). We
also note that the various levels of analysis are causally

interrelated and are thus mutually constraining (Rumelhart &
McClelland 1985). It follows that refinement of a model at one
level of analysis focuses the search for theoretical solutions at
another. We therefore view theoretical pluralism among
researchers as an efficient means of developing more complete
psychological theories.

We suggest that findings from the so-called “Bayesian Funda-
mentalist” perspective have highlighted core issues in developing
more complete psychological theories, and that discoveries by
individual “Fundamentalist” researchers may actually facilitate
discipline-wide “Enlightenment” by sharpening questions and
generating novel insights that stimulate research (e.g., Shiffrin
et al. 2008). J&L’s admonishment of Bayesian Fundamentalism,
depending on whether it is directed at psychological science as a
whole, or to individual researchers, is either a) powerful but
directed at a largely non-existent opponent, or (b) misguided
insofar that the collaborative nature of scientific progress
offsets the narrow focus of individual scientists.

Contrary to J&L, we argue the “breadth-first” approach
adopted by many Bayesian theorists, rather than stifling theoreti-
cal progress, actually facilitates cross-talk between levels of analy-
sis. That contemporary Bayesian theorists are aware of, and
aspire to resolve this tension, is reflected in recent work that
has sought to reconcile rational accounts with more traditional
process models. For example, to the extent that models of cogni-
tive processing implement sampling algorithms to approximate
full Bayesian inference, models at different levels of analysis
can be mutually informative. Shi et al. (2010) illustrate how
exemplar models (e.g., Nosofsky 1986) can be interpreted as an
importance sampling algorithm, and, similarly, Sanborn
et al.(2010a) explored the particle filter algorithm as a way of
leveraging a process interpretation of Anderson’s (1991b)
rational model. Lewandowsky et al.(2009) used iterated learning
(Griffiths & Kalish 2007; Kalish et al. 2007), an experimental
paradigm motivated by technological advances in sampling tech-
niques used to approximate Bayesian posteriors, to decisively
reject a sparse-exemplar model of predicting the future.
Kruschke (2006; 2008) contrasted globally and locally Bayesian
approaches to associative learning, the latter of which can be con-
strued as carrying very direct process implications concerning
selective attention. J&L acknowledge the potential of these
approaches for transcending computational level theories but
do not acknowledge the role of the computational theories for
driving research in this direction.

One area where Bayesian perspectives appear particularly
more illuminating than mechanistic approaches is in explaining
individual differences. For example, work from within the knowl-
edge partitioning framework has repeatedly found large differ-
ences in transfer performance in tasks that can be decomposed
into a number of simpler sub-tasks (e.g., Lewandowsky et al.
2002; 2006; Yang & Lewandowsky 2003). Mechanistic modeling
of these results has highlighted the importance of modular archi-
tecture (Kalish et al. 2004; Little & Lewandowsky 2009), selective
attention (Yang & Lewandowsky 2004), and their interaction
(Sewell & Lewandowsky 2011) in accounting for such individual
differences. However, a significant limitation of a mechanistic
approach is that the solutions have been built into the models.
By contrast, recent Bayesian modeling of knowledge partitioning
has showed that many aspects of the individual differences
observed empirically emerge naturally if one assumes that
people are trying to learn about their environment in a rational
manner (Navarro 2010).

J&L draw uncharitable parallels between “Bayesian Funda-
mentalism” on the one hand, and Behaviorism, connectionism,
and evolutionary psychology on the other. In response, we note
that theoretical setbacks in those paradigms have clarified our
understanding of how the mind does and does not work. Conse-
quently, cognitive science has emerged with a more refined
theoretical toolkit and new, incisive research questions. For
Behaviorism, a restrictive theoretical stance solidified the need
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to consider more than just the history of reinforcement in
explaining behavior (Neisser 1967). The inability of the percep-
trons to handle nonlinearly separable problems forced connec-
tionists to consider more powerful model architectures
(Thomas & McClelland 2008). Likewise, controversies that
have erupted in evolutionary psychology over the propagation
of cognitive modules have forced theorists to refine and reevalu-
ate classical notions of modularity (cf. Barrett & Kurzban 2006;
Fodor 1983). Thus, the failures of the precedents chosen by
J&L actually constitute successes for the field; for example, the
cognitive revolution was propelled and accelerated by the specta-
cular failure of Behaviorism.

We close by considering how J&L’s critique of Bayesian Funda-
mentalism relates to scientific activity in practice. If they address
the scientific community as a whole, their criticism is powerful,
but lacks a real target. Alternatively, if J&L’s concerns are directed
at individual scientists, their plea overlooks the fact that scientific
progress, being inherently distributed across multiple research
groups, “averages out” individual differences in theoretical dispo-
sitions. That is, the aggregate outcomes produced by the scientific
community are unlikely to be reflected in the individual outcomes
produced by a given scientist (Kuhn 1970).

Whereas a complete level-spanning theory will always be the
goal of science, the approach toward that collective goal will be
incremental, and those pursuing it will tend to focus on a particu-
lar level of analysis. The important question for any individual
researcher is whether an adopted theoretical framework shar-
pens questions, provides insight, and guides new empirical
inquiry (Shiffrin et al. 2008); recent Bayesian modeling of cogni-
tion undoubtedly fulfills these requirements.
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Abstract: A central claim of Jones & Love’s (J&L’s) article is that
Bayesian Fundamentalism is empirically unconstrained. Unless
constraints are placed on prior beliefs, likelihood, and utility functions,
all behaviour – it is proposed – is consistent with Bayesian rationality.
Although such claims are commonplace, their basis is rarely justified.
We fill this gap by sketching a proof, and we discuss possible solutions
that would make Bayesian approaches empirically interesting.

Although the authors are perhaps attacking a straw-man, we
agree with many points raised in Jones & Love’s (J&L’s) critique
of “Bayesian Fundamentalism.” It is our objective here to
strengthen their claim that Bayesian Fundamentalism is empiri-
cally unconstrained; although such claims are often made, their
basis is not usually fleshed out in any detail. This is such a key
part of the case that we sketch a proof and discuss possible
solutions.

Without placing constraints on prior beliefs, likelihood, and
utility functions, claims of Bayesian rationality are empirically
empty: any behaviour is consistent with that of some rational
Bayesian agent. To illustrate this point, consider a simple prob-
ability learning task in which a participant has two response
options (e.g., press a left or a right button), only one of which
will be rewarded. On each trial t, the participant gives a response
xt ¼ f0,1}, and then observes the placement of the reward
yt ¼ {0,1}, which is under control of the experimenter. The ques-
tion is whether the assumption of Bayesian rationality places any

restrictions on the response sequence for a given reward
sequence.

In Bayesian inference, the prior distribution and likelihood
(model of the task) assign a probability P(yt¼ Sj) to each possible
reward sequence. Without further constraints, we can take this
probability to be proportional to a value vj � 0. After observing
y1, some of the rewarded sequences are impossible, and learning
consists of setting the probability of these sequences to 0 and
then renormalizing. For example, consider a task with three
trials. The possible reward (and response) sequences are given
in Table 1. Assume the sequence of rewards is y ¼ S1. After
observing y1 ¼ 0, S5 to S8 are impossible and the posterior prob-
abilities become P(Sjjy1) ¼ vj/Skvk, for j, k ¼ 1, . . ., 4, and
P(Sjjy1)¼0 for j ¼ 5, . . ., 8. After observing y2 ¼ 0, S3 and S4

are also impossible, and the posterior probabilities become
P(Sjjy1) ¼ vj/Sjvk, for j, k ¼ 1, 2, and P(Sjjy1) ¼ 0, for j ¼ 3,
4. After observing y3 ¼ 0, only S1 remains with a probability 1.

A rational Bayesian agent gives responses which maximise his or
her subjective expected utility, conditional upon the previously
observed rewards. For simplicity, assume the utility of a correct
prediction is u(yt ¼ xt)¼1 and that of an incorrect prediction is
u(yt = xt) ¼ 0, so that the expected utilities correspond to the pos-
terior predicted probabilities of the next reward. The crucial point
is that in this general setup, we can always choose the values vj to
make any sequence of responses xt conform to that of a maximizer
of subjective expected utility. For example, suppose the sequence
of rewards is S1 and the sequence of responses is S8. The
first response x1¼1 implies that v1þ v2þ v3þ v4v5v6v7v8; the
second response x21 implies that v1v2v3v4; the third response
x3 1 implies that v1v2. One choice of values consistent with this
is vjj. For any response sequence, we can choose values which
adhere to such implied inequalities, so behaviour is always consist-
ent with a rational Bayesian agent. Although we have considered a
rather simple situation with a small number of trials, this result
generalizes readily to other sequential learning tasks such as cat-
egory learning (for a related, more general and formal proof,
see, e.g., Zambrano 2005). The problem becomes even more
severe if we allow the utilities to depend on previous outcomes,
which may not be entirely implausible (e.g., a third misprediction
in a row may be more unpleasant than the first).

One may object that the particular method of Bayesian infer-
ence sketched here is implausible: Would someone really assign
probabilities to all possible reward sequences? Maybe not expli-
citly, but in an abstract sense, this is what Bayesian modelling
boils down to. Granted, the values assigned have been arbitrary,
but that is exactly the point: Bayesian rationality is silent about
the rationality of priors and likelihoods, yet some of these seem
more rational than others. Thus, rationality hinges on more than
adherence to Bayesian updating and utility maximization.

Is the claim of Bayesian inference and decision making always
empirically empty? No. For instance, the assumption that
rewards are exchangeable (that they can be reordered without
affecting the probabilities) places equivalence restrictions on
the values v such that, given a sufficient number of trials, some
response sequences would violate utility maximization. Exchan-
geability is crucial to the convergence of posterior probabilities
and the decisions based on them. Another option would be to
let participants make multiple decisions while keeping their

Table 1 (Speekenbrink & Shanks). Possible reward and response
sequences (Sj) in a simple learning task with three trials (t)

t S1 S2 S3 S4 S5 S6 S7 S8

1 0 0 0 0 1 1 1 1
2 0 0 1 1 0 0 1 1
3 0 1 0 1 0 1 0 1

Commentary/Jones & Love: Bayesian Fundamentalism or Enlightenment?

BEHAVIORAL AND BRAIN SCIENCES (2011) 34:4 213



information base (posterior probabilities) constant, so that
intransitive decisions become possible. More generally, testable
conditions of Bayesian rationality can be found in the axioms of
subjective expected utility theory (e.g., Savage 1954). Empirically
meaningful claims of Bayesian rationality should minimally
ensure the possibility that the data can falsify these axioms. Axio-
matic tests are “model-free” in the sense that they do not rely on a
particular choice of prior distribution and utility function. Such
tests should be a first step in rational analysis; if the assumption
of Bayesian rationality is not rejected, one can then look for
priors and utilities which match the observed behaviour. Given
rich-enough data, this search can be guided by conjoint measure-
ment procedures (e.g., Wallsten 1971).

To conclude, while “Bayesian Fundamentalism” is generally
unconstrained, by placing appropriate restrictions, the assump-
tion of Bayesian rationality is subject to empirical testing and,
when not rejected, can help guide model building.
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Abstract: In advocating Bayesian Enlightenment as a solution to
Bayesian Fundamentalism, Jones & Love (J&L) rule out a broader
critique of rationalist approaches to cognition. However, Bayesian
Fundamentalism is merely one example of the more general
phenomenon of Rationalist Fundamentalism: the tendency to
characterize human judgments as rational and optimal in a post hoc
manner, after the empirical data are already known.

Jones & Love (J&L) are right to criticize what they term “Baye-
sian Fundamentalism” as not empirically grounded, uninformed
by psychological data, open to multiple rational accounts of a task
or decision, and conducive to post hoc explanations. However, in
advocating Bayesian Enlightenment as a solution, they appear to
rule out a broader critique of rationalist approaches to human
cognition. Specifically, Bayesian Fundamentalism is one
example of the more general phenomenon of Rationalist Funda-
mentalism: the tendency to characterize a given judgment as
rational and optimal in a post hoc manner, after the empirical
data are already known. Few researchers would argue that
human behavior is perfectly optimal and rational. However, a
desire to see the human mind as operating rationally, and the
use of post hoc justifications to reach this conclusion, suggest
we should be skeptical of after-the-fact “rational” explanations.

Decades of empirical studies show people are strongly motiv-
ated to see themselves as rational and objective (for reviews, see
Armor 1999; Pronin et al. 2004; Pyszczynski & Greenberg 1987;
Ross & Ward 1996). Decision makers engage in motivated
reasoning and psychological rationalizations designed to preserve
this “illusion of objectivity” (Armor 1999; Pronin et al. 2002) –
for instance, changing their definition of what an optimal judg-
ment is after the fact (Dunning & Cohen 1992; Epstein et al.
1992; Kunda 1987; Norton et al. 2004; Uhlmann & Cohen
2005). Evidence that general psychological processes are not
rational or optimal represents a threat to this cherished illusion.
Fundamentalist resistance to evidence of human irrationality
further stems from economics and related disciplines, in which
optimality and the maximization of utility are widely perceived
as necessary assumptions about human behavior.

A rationalist defense can involve constructing a post hoc Baye-
sian account of an empirical finding predicted a priori from

theories grounded in psychological limitations and motives. Con-
sider the phenomenon of biased assimilation, in which participants
rate a scientific study that supports their political beliefs (e.g.,
about the deterrent effects of capital punishment) as methodologi-
cally superior to a study that refutes their beliefs (Lord et al. 1979).
The cognitive-rationalist interpretation is that decision makers are
simply making Bayesian inferences, taking into account subjective
probabilities (e.g., their prior political beliefs) when evaluating
new evidence. However, further findings contradict the claim
that biased assimilation is merely the product of Bayesian infer-
ences. For instance, individuals whose positive self-image is
affirmed are less likely to exhibit biased assimilation (Cohen
et al. 2000; see also Dunning et al. 1995; Sherman & Cohen
2002). This is consistent with the idea that biased information pro-
cessing stems from a motivated desire to dismiss evidence that
threatens valued beliefs and, by extension, the self (Sherman &
Cohen 2006; Steele 1988). When a decision maker is feeling
good about herself, there is less need to be biased. In addition,
would-be parents who believe day care is bad for children, but
plan to use day care themselves (and therefore desire to conclude
that day care is just as good as home care), show biased assimila-
tion in favor of day care (Bastardi et al. 2011). What decision
makers desire to be true seems to trump what they believe to be
factually true – the ostensive basis for any Bayesian inferences.

As J&L point out, one of the most problematic aspects of rational
models is how little attention can be paid to whether the assump-
tions of the statistical model correspond to what is actually going on
in people’s heads as they engage in a task or make a decision. I once
debated an economist who argued that micro-level psychological
data on what goals people pursue in the dictator game are irrele-
vant: The material self-interest account must be true if people’s
offers correspond to the predictions of the statistical model.
However, it is dangerous to assume that because a rational statisti-
cal model can mimic or reproduce a pattern of data, the underlying
psychological process is a rational one. That a computer can mimic
some of the outputs of human thought does not necessarily mean
the mind functions in the same way as a computer.

The last defense of post hoc rationalism is to swap normative
models of rationality entirely. In other words, researchers can
speculate post-hoc as to what alternative goals decision-makers
may have been pursuing, in order to preserve the view that par-
ticipants were acting rationally. Never mind the goals to optimize
material outcomes or achieve accuracy: Judgmental biases can be
defined as “rational” because they preserve the decision maker’s
personal self-image, psychological well-adjustment, public repu-
tation, cherished religious beliefs, desire to punish norm viola-
tors, existential goals, likelihood of survival in ancestral
environments, or even the happiness of their marriage (Cosmides
& Tooby 1994; Hamilton 1980; Krueger & Funder 2004; Lerner
& Tetlock 1999; Tetlock 2002; Tetlock et al. 2000; 2007).

It has been argued that the heuristics-and-biases approach to
cognition is itself biased, in the direction of attributions to irra-
tionality (Krueger & Funder 2004). Despite its shortcomings,
however, the heuristics-and-biases research program is at least
based on a priori theoretical hypotheses. There are few cases of
“post hoc irrationalism” in which robust empirical effects pre-
dicted a priori by Bayesian or otherwise rationalist models are
redefined post hoc as due to motives such as the need for self-
esteem or control.

Although Bayesian Enlightenment, as advocated by J&L, is a
major improvement on Bayesian Fundamentalism, it is still
subject to post hoc rationalism. An interface between Bayesian
or otherwise rationalist models and data on psychological pro-
cesses leaves plenty of room for the former to distort interpret-
ations of the latter. A wealth of evidence indicates that human
beings are subject to a powerful illusion of rationality and objec-
tivity they are strongly motivated to maintain and which influ-
ences their perceptions of scientific data. Researchers are also
human beings. It would be remarkable indeed if scientists were
immune to the empirical phenomena we study.
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Abstract: Mathematical developments in probabilistic
inference have led to optimism over the prospects for
Bayesian models of cognition. Our target article calls for
better differentiation of these technical developments from
theoretical contributions. It distinguishes between Bayesian
Fundamentalism, which is theoretically limited because of its
neglect of psychological mechanism, and Bayesian
Enlightenment, which integrates rational and mechanistic
considerations and is thus better positioned to advance
psychological theory. The commentaries almost uniformly
agree that mechanistic grounding is critical to the success of
the Bayesian program. Some commentaries raise additional
challenges, which we address here. Other commentaries claim
that all Bayesian models are mechanistically grounded, while
at the same time holding that they should be evaluated only
on a computational level. We argue this contradictory stance
makes it difficult to evaluate a model’s scientific contribution,
and that the psychological commitments of Bayesian models
need to be made more explicit.

R1. Introduction

The rapid growth of Bayesian cognitive modeling in recent
years has outpaced careful consideration and discussion of
what Bayesian models contribute to cognitive theory. Our
target article aimed to initiate such a discussion. We
argued there is a serious lack of constraint in models
that explain behavior based solely on rational analysis of
the environment, without consideration of psychological
mechanisms, but that also fail to validate their assumptions
about the environment or the learner’s goals.
We referred to the approach of Bayesian modeling without
consideration of mechanism as Bayesian Fundamentalism.
We went on to advocate an approach we labeled Bayesian
Enlightenment, in which elements of a Bayesian model are
given a psychological interpretation, by addressing how
the learner’s hypotheses are represented, where they
come from, what the learner’s goals are, and how inference
is carried out. Although several commentators argue for
further challenges or shortcomings, no serious challenge
was offered to the conclusion that, at the least, Bayesian
models need this type of grounding. Primarily, the com-
mentaries serve to reinforce, in various ways, the idea
that it is critical to be clear on the psychological commit-
ments and explanatory contributions of cognitive models.

Technical breakthroughs can often enable new theoreti-
cal progress, by allowing researchers to formalize and test
hypotheses in ways that were not previously possible.
Thus, development of new formal frameworks can be
important to the progress of the field as a whole
(Chater, Goodman, Griffiths, Kemp, Oaksford, &

Tenenbaum [Chater et al.]; Navarro & Perfors).
However, technical advances are not theories themselves,
and there is a real danger in confusing the two. As cogni-
tive scientists well know, it is critical for modelers to clarify
which aspects of a model are meant as psychological com-
mitments and which are implementation details. For
example, sophisticated sampling methods for estimating
posterior distributions enable derivation of predictions
from complex Bayesian models that were previously
intractable. However, if these approximation algorithms
are not intended as psychological mechanisms, then any
deviations they produce from optimality should not be
taken as necessary predictions of the model. Likewise,
probabilistic methods for specifying priors over structured
hypotheses may enable computational analysis of new
learning domains. Again, if the particular assumptions
built into the hypothesis space are not meant as claims
about the learner’s knowledge or expectations (i.e., other
choices would have been equally reasonable), then many
predictions of the model should not be taken as necessary
consequences of the underlying theory. Thus, when
implementation decisions are not clearly separated from
theoretical commitments, one cannot tell what the
model’s real predictions are, or, consequently, how it
should be tested. For the same reasons, it can be
unclear what new understanding the model provides, in
terms of what was explained and what the explanation is
(Rehder). In short, one cannot evaluate the model’s scien-
tific contribution.

In this reply, we argue there is still serious confusion
and disagreement about the intended status of most Baye-
sian cognitive models. We then evaluate the potential
theoretical contribution of Bayesian models under differ-
ent possible interpretations. When Bayesian models are
cast at a purely computational level, they are mostly
empty. When Bayesian models are viewed as process
models, they have potentially more to say, but the interest-
ing predictions emerge not from Bayes’ rule itself but from
the specific assumptions about the learner’s hypotheses,
priors, and goals, as well from questions of how this infor-
mation is represented and computed. Thus, we advocate
shifting attention to these assumptions, viewed as psycho-
logical commitments rather than technical devices, and we
illustrate how this stance shifts attention to important
psychological questions that have been largely neglected
within the Bayesian program to date. Finally, we consider
several other challenges raised to the Bayesian program,
and specifically to the proposed integration with mechan-
istic approaches that we labeled Bayesian Enlightenment.
We conclude that the Bayesian framework has potential to
add much to cognitive theory, provided modelers make
genuine psychological commitments and are clear on
what those commitments are.

R2. Theoretical status of Bayesian models

A primary confusion surrounding Bayesian cognitive
models is whether they are intended as purely compu-
tational-level theories, or whether certain components of
the model are to be taken as claims regarding psychologi-
cal mechanism. Specifically: Are hypotheses and priors
assumptions about the environment or the learner? That
is, are they devices for the modeler to specify the
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assumed statistical structure of the environment, or are
they meant as psychological constructs? Are algorithms
for approximating optimal inference to be viewed as
tools for deriving model predictions or as psychological
processes? More broadly, does the brain represent infor-
mation in terms of probabilities, or does it just behave as
though it does? Unfortunately, these questions are not
always answered, and those answers that are given are
often contradictory. This state of affairs seriously limits
scientific evaluation of Bayesian models and makes it diffi-
cult to determine their explanatory contribution.

For all of our criticisms of J. R. Anderson’s (1990)
rational analysis in the target article, his viewpoint is
clear and coherent. According to J. R. Anderson, rational
models are distinguished from mechanistic models in
that rational models do not make reference to mental rep-
resentations or processes. Instead, these models specify
relevant information structures in the environment and
use optimal inference procedures that maximize perform-
ance for the assumed task goal. We labeled this view (in
the context of probabilistic models) as Bayesian Funda-
mentalism in the target article and offered an unfavorable
critique. On the positive side, the fundamentalist view is
theoretically clear, whereas much of contemporary Baye-
sian modeling is not.

Indeed, we find many of the commentaries theoretically
confusing and contradictory. Certainly, self-identified
Bayesian advocates contradict one another. For example,
Gopnik states that Bayesian models have psychological
representations but not processes, whereas Borsboom,
Wagenmakers, & Romeijn (Borsboom et al.) claim
they are not representational but are process models.
Borsboom et al.’s position is particularly curious because
they assert that a Bayesian model is a process model but
not a mechanistic model. This position contradicts their
own definitions, as it is impossible to specify the state
dynamics of a system (the process model, their terms)
without specifying the system itself (the mechanism).

These different views on what constitutes a Bayesian
model highlight that the theoretical underpinnings of
models are not always as clear as one would hope. In
mechanistic models, it is clear that key processing and rep-
resentation claims involve postulated mental entities. In
the fundamentalist rational view, it is clear that process
and representation do not refer to mental entities. Unfor-
tunately, many Bayesian models seem to waver among
various intermediate positions. For example, positing one
component of a model (e.g., process or representation)
as a mental entity and the other as not, may evoke Carte-
sian dualism, in which ontologically different entities (e.g.,
non-physical and physical) interact. If one is not careful
about the statuses of all model components, it is easy for
them to slip from one to the other, making the model’s
position and contribution uncertain. Therefore, more
care needs to be taken in spelling out exactly what kind
of model one is specifying and its intended contribution
(Bowers & Davis; Fernbach & Sloman).

Part of this confusion arises because terms like “rep-
resentation” mean different things to different self-ident-
ified Bayesians and, more worrisome, can shift meaning
within a single contribution. To be clear, mental represen-
tations (as opposed to mathematical representations of
probability distributions in the world) are in the head
and are acted on by mental processes. For example, in

the Sternberg (1966) model of short-term memory, the
mental representation of items in short-term memory con-
sists of an ordered buffer that is operated over by an
exhaustive search process. This is not a model of optimal
inference based on environmental regularities but is,
instead, an account of how information is represented
and manipulated in the head. The specified mental pro-
cesses and representations make predictions for response
time and error patterns, and these predictions can be used
to evaluate the model and explore implementational
questions.

We find the slipperiness and apparent self-contradic-
tions of some Bayesian proposals regarding their psycho-
logical status to be theoretically unhelpful. For example,
Chater et al. state that, unlike Behaviorism, Bayesian
cognitive science posits mental states, but then they con-
tradict this position by stating that these theories are posi-
tioned at a computational level (in the sense of Marr 1982)
and don’t need to address other levels of explanation. We
agree with Chater et al. that technical advances have led to
a greater range of representations in Bayesian models, but
if these models reside at the computational level then
these are representations of probability distributions, not
mental representations. That is, they reside in the head
of the researcher, not the subject. Finally, Chater et al.
emphasize the importance of descriptions of structured
environments in the sense of J. R. Anderson’s (1990)
rational program (i.e., Bayesian Fundamentalism), which
again contradicts claims that the Bayesian models they
discuss have mental representations. There are many
interesting ideas in this commentary, but it is impossible
to integrate the points into a coherent and consistent
theoretical picture.

We agree with Fernbach & Sloman that “modelers
are not always as clear as they should be about whether
these hypotheses represent psychological entities or
merely a conceptual analysis of the task (or both), and
the import of the model does depend critically on
that.” However, even these commentators confuse the
status of Bayesian constructs. Fernbach & Sloman
claim that Bayesian hypotheses constitute more than
probability distributions over data; that, instead, they
always correspond to psychological constructs or
mental models relevant to the task in question – in
direct contradiction to the previous quote from their
commentary. If hypotheses are not psychological con-
structs, then indeed they are nothing but elements of
the probabilistic calculus the modeler uses to derive pre-
dictions from the model. It should not be controversial
that many Bayesian models used in ideal observer ana-
lyses do not contain mental representations, but are
instead models of the task environment, just as it is
uncontroversial that Bayesian models used in physics,
chemistry, credit fraud detection, and so forth, do not
contain mental representations.

Even within the cognitive sciences, Bayesian methods
are often used as analysis tools (see discussion of “Agnostic
Bayes” in the target article) that are not intended as
psychological theories. Indeed, as Lee discusses, such
methods provide a powerful means for evaluating all
types of models. Lee notes that, oddly, many articles
hold up Bayesian inference as the paragon of rationality
and then test their models by using Frequentist statistics.
This practice makes one wonder how strongly Bayesian
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modelers truly believe in the rational principles of their
theories. Lee’s proposal to use Bayesian model selection
to evaluate Bayesian cognitive models seems more self-
consistent, and we agree that the Bayesian approach
offers many useful tools for evaluating and comparing
complex models (although some of the advantages he
cites, such as parameter estimation and testing hierarchi-
cal models, are also compatible with maximum-likelihood
techniques and Frequentist statistics).

As commentators Glymour, Rehder, and Rogers &
Seidenberg have highlighted, it can be difficult to know
what one is to take away from some Bayesian accounts.
As these commentators discuss, hugely complex hypoth-
esis spaces are often proposed but with no claim that
people perform inference over these spaces in the
manner the models do; and any connection with neuro-
science is disavowed in favor of theory residing solely at
the computational level. When models do make connec-
tions with broader efforts, the message can become con-
fused. For example, Borsboom et al. assert that
mechanisms for belief updating reside in the brain and
can be studied to provide support for Bayesian models,
but they then appeal to notions of optimality, stating that
the substrate of computation is completely unimportant
and only fitting behavioral data matters.

In conclusion, although we provide ample examples of
Bayesian Fundamentalist contributions in the target article,
we might have to agree with those commentators (Chater
et al.; Gopnik; Sewell, Little, & Lewandowsky [Sewell
et al.]) who argue there are no Bayesian Fundamentalists,
because it is not always clear what position many Bayesians
support. This lack of theoretical clarity is potentially a
greater threat to theoretical progress than is the Bayesian
Fundamentalist program itself. When the intended status
of a Bayesian model is not made explicit, assumptions such
as the choice of goals and hypothesis space can be referred
to in vague language as constituting knowledge or represen-
tation, but when the assumptions are contradicted by data,
the modeler can fall back on the computational position
and say they were never intended to be psychologically
real. The result is a model that appears to have rich represen-
tational structure and strong psychological implications, but
which, when prodded, turns out to be quite empty.

R3. Bayesian models as computational-level
theories

Setting aside how Bayesian models have been intended –
which we have argued is often unclear – we now evaluate
their potential theoretical contribution under a purely com-
putational-level interpretation. By the “computational level”
we mean the standard position taken by rational analysis
(e.g., J. R. Anderson 1990) that one can explain aspects of
behavior solely by consideration of what is optimal in a
given environment, with no recourse to psychological con-
structs such as knowledge representation or decision pro-
cesses. Our aim is to draw out the full implications of this
position once a Bayesian model is truly held to it, rather
than being afforded the sort of slipperiness identified
earlier. As Norris points out, J. R. Anderson was aware of
and cautioned against many of the limitations of his rational
approach, but much of that message seems to have been lost
amidst the expressive power of the Bayesian framework.

It is generally recognized that the specific represen-
tations of hypotheses and the algorithms for updating
belief states are not meant as psychological commitments
of a computational-level Bayesian model. However, the
situation is more severe than this, because on a true com-
putational-level stance the entire Bayesian calculus of
latent variables, hypotheses, priors, likelihoods, and pos-
teriors is just an analytic device for the modeler. Priors
and likelihoods (as well as any hierarchical structure in
the hypothesis space) are mathematically equivalent to a
“flat” or unstructured model that directly specifies the
joint distribution over all observations. Computing a pos-
terior and using it to predict unobserved data is equivalent
to calculating the probabilities of the unobserved data con-
ditioned on observed data, with respect to this joint distri-
bution. If process is irrelevant, then these conditional
probabilities are the only content to a Bayesian model.
That is, the model’s only assertion is that people act in
accordance with probabilities of future events conditioned
on past events. In other words, people use past experience
to decide what to do or expect in the future. The model
says nothing whatsoever beyond this extremely general
position, other than that decisions are optimal in a prob-
abilistic sense, due to unspecified processes and with
respect to (usually) unvalidated assumptions about the
statistics of the environment.

Contrary to Chater et al.’s claim, this interpretation of
a Bayesian model is very much like Behaviorism in its
deliberate avoidance of psychological constructs. To
argue, as Chater et al. do in point (iii) of their commen-
tary’s section 2, that “Behaviorists believe that no such
computations exist, and further that there are no internal
mental states over which such computations might be
defined” is a misreading of Behaviorist philosophy. The
actual Behaviorist position (e.g., Skinner 1938) was that
psychological states are unobservable (not nonexistent)
and hence should not be elements of scientific theories,
and that behavior should be explained directly from the
organism’s experience. This position aligns very closely
with the motivations offered for computational-level mod-
eling based on rational analysis (e.g., J. R. Anderson 1990).
Although Bayesian modeling generally involves significant
computation, if the models are to be interpreted at the
computational level, then by definition these computations
have nothing to do with psychological states.

As noted in the target article, a strong case has been
made that probabilistic inference is the best current fra-
mework for normative theories of cognition (Oaksford &
Chater 2007). However, this observation does not say
much about actual cognitive processes or the represen-
tations on which they operate. To state, as Edelman &
Shahbazi do, that all viable approaches ultimately
reduce to Bayesian methods does not imply that Bayesian
inference encompasses their explanatory contribution.
Such an argument is akin to concluding that, because
the dynamics of all macroscopic physical systems can be
modeled using Newton’s calculus, or because all cognitive
models can be programmed in Python, calculus or Python
constitutes a complete and correct theory of cognition.
This is not to say the rational principles are irrelevant,
but they are not the whole story.

Furthermore, although ecological rationality can be a
powerful explanatory principle (e.g., Gibson 1979;
Gigerenzer & Brighton 2009), most Bayesian cognitive
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models fail to realize this principle because they are not
based on any actual measurement of the environment.
This is a serious problem for a Bayesian model inter-
preted at the computational level, because, as just
explained, statistical properties of the environment
(specifically, probabilities of future events conditioned
on past events), together with the learner’s goals, consti-
tute the entire content of the model. The fact that these
properties are free to be chosen post hoc, via specifica-
tion of hypotheses and priors, significantly compromises
the theoretical contributions of Bayesian models
(Anderson; Bowers & Davis; Danks & Eberhardt;
Glymour; Rehder; Rogers & Seidenberg). The
sketch proof by Speekenbrink & Shanks shows how
nearly any pattern of behavior is consistent with Bayesian
rationality, under the right choice of hypotheses, priors,
and utility functions. Rehder goes as far as to suggest
viewing the Bayesian framework as a programming
language, in which Bayes’ rule is universal but fairly
trivial, and all of the explanatory power lies in the
assumed goals and hypotheses. Thus, the basis of these
assumptions requires far more scrutiny than is currently
typical.

As with any underconstrained model, a Bayesian model
developed without any verification of its assumptions is
prone to overfit data, such that it is unlikely to extend to
new situations. Hence, whereas Borsboom et al. argue
that Bayesian models should not be constrained by mech-
anism as long as they can match existing data, we suggest
such an approach is unlikely to predict new data correctly.
The observations by Jenkins, Samuelson, & Spencer
(Jenkins et al.) on the fragility of the suspicious coinci-
dence effect in word learning illustrate this point.

The flexibility of rational explanation rears its head in
other ways as well. At an empirical level, Uhlmann
reviews evidence that people often change their goals to
justify past decisions, a phenomenon that is difficult for
any rational model to explain naturally. At a metatheoreti-
cal level, Uhlmann notes, “It would be remarkable indeed
if scientists were immune to the empirical phenomena we
study.” Therefore, although rational principles are clearly
an important ingredient in explaining cognition, cognitive
scientists might be well advised to guard against a ten-
dency to disregard all of the ways and mechanistic
reasons that people are irrational.

Despite these dangers of a purely computational
framing, the mathematical framework of probabilistic
inference does have advantages that are not dependent
on specification of psychological mechanism. One impor-
tant principle is the idea that the brain somehow tracks
uncertainty or variability in environmental parameters,
rather than just point estimates. This insight has been
influential in areas such as causal induction (Holyoak &
Lu), but it is also not new (e.g., Fried & Holyoak 1984).
Another strength of the Bayesian framework is that it
offers natural accounts of how information can be com-
bined from multiple sources, and in particular, how
people can incorporate rich prior knowledge into any
learning task (Heit & Erickson). However, this potential
is unrealized if there is no independent assessment of what
that prior knowledge is. Instead, the expressive flexibility
of Bayesian models becomes a weakness, as it makes
them unfalsifiable (Bowers & Davis; Danks & Eber-
hardt; Glymour; Rogers & Seidenberg). In some

cases, the assumptions of a Bayesian model are demonstra-
bly false, as Rehder points out in the case of mutual exclu-
sivity in categorization models, but even then the
conclusion is unclear. Was the failed assumption theoreti-
cally central to the model, or just an implementation detail
of a more general theory that might still hold? If so, what is
that general theory that remains after the particular
assumptions about the hypothesis space are set aside?
Under a computational-level stance, all that is left is the
claim of optimality with respect to an unspecified environ-
ment, which is no theory at all.

Shifting from issues of representation to the decision
process itself, Danks & Eberhardt and Glymour point
out that even the empirical evidence used to support Baye-
sian models often seriously undermines the claim of Baye-
sian rationality. Specifically, arguments for Bayesian
models often take the form that empirical choice probabil-
ities align with probabilities in the model’s posterior distri-
bution. The reasoning seems to be that subjects are
choosing in accordance with that posterior and are thus
behaving consistently with Bayesian inference. However,
a true rational account predicts no such behavior.
Instead, subjects should be expected to maximize reward
on every individual trial (i.e., to behave deterministically).
The standard normative explanation for probability match-
ing – which is endemic in psychology – is based on the
need for exploration (e.g., Cohen et al. 2007), but this
idea is not formalized in most Bayesian models. More
importantly, feedback is independent of the subject’s
action in many laboratory tasks (e.g., those involving
binary choice), which renders exploration irrelevant.
Thus, normative ideas about exploration have been
extended beyond their domain of applicability, partly
because the connection between rational inference and
actual choice behavior is not explicitly worked out in
most Bayesian models.

Finally, Al-Shawaf & Buss and Pietraszewski & Wertz
point out (echoing many of the points in the target article)
that evolutionary psychology, the field that has most
thoroughly explored optimality explanations for behavior,
has come to a broad conclusion that one must consider
mechanism in order for optimality theories to be successful.
Explaining behavior from rational perspectives that eschew
mechanism is problematic, because behavior is not directly
selected but instead arises from selection operating on
mechanisms and their interactions with the environment
(see target article, sect. 5.3). Likewise, Anderson argues
that measuring the environment is not always enough
because there is still the problem of identifying the
natural tasks that shaped evolution. Bayesian inference is
a powerful tool for developing ideal observers once the evo-
lutionarily relevant task has been identified, but it provides
no help with the identification problem itself.

In summary, when Bayesian models are interpreted on
a purely computational level and are held to that position,
they turn out to be quite vacuous. Bayesian rationality
reduces to the proposal that people act based on probabil-
ities of future events conditioned on past events, with no
further psychological implications. The derivation of
those probabilities is based on assumptions that are gener-
ally unconstrained and untested. Lastly, even when a
model is based on correct assumptions about the environ-
ment and the learner’s goals, global optimality taken alone
generally provides an inadequate explanation for behavior.
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R4. Bayesian models as mechanistic theories

The alternative to a purely computational-level interpret-
ation of a Bayesian model is to take one or more aspects
of the model as corresponding to psychological constructs.
In this section, we consider various such stances. We argue
that Bayesian models can make useful theoretical contri-
butions under these interpretations, but that those contri-
butions come not from Bayesian inference itself but from
other components of the models, which should be treated
as more theoretically central than they currently are. This
shift of emphasis can go a long way toward clarifying what
a Bayesian model actually has to say and how it relates to
previous proposals.

An obvious candidate within the Bayesian framework
for treatment as a psychological mechanism, and the one
most related to the idea of a unified Bayesian theory of
cognition, is the belief updating embodied by Bayes’ rule
itself. As explained in the target article (sect. 3), exact
Bayesian inference is equivalent to vote counting,
whereby the evidence (technically, log prior probability
and log likelihood) for each hypothesis is simply
summed over successive independent observations.
Chater et al. point out that many tasks addressed by
Bayesian models require joint posterior distributions to
be reduced to marginal distributions over single variables;
but this introduces little additional complexity – just an
exponential transform (from log posterior, the output of
vote counting, to posterior) and then more summation.
In most modern models, hypothesis spaces are continuous
and hence summation is replaced in the model by inte-
gration, but this is an unimportant distinction, especially
in a finite physical system. Therefore, the vote-counting
interpretation is valid even for the more complex Bayesian
models that have arisen in recent years.

Chater et al. go on to argue that much research with
Bayesian models posits more complex algorithms than
vote counting, for approximating posterior distributions
when exact calculation is infeasible. However, most
papers that use such algorithms explicitly disavow them
as psychological assumptions (e.g., Griffiths et al. 2007).
Instead, they are only meant as tools for the modeler to
approximate the predictions of the model. More recent
work that treats approximation algorithms as psychological
processes, takes their deviations from optimal inference as
real predictions, and compares alternative algorithms (e.g.,
Sanborn et al. 2010a) fits squarely into one of the
approaches that we advocated as Bayesian Enlightenment
in the target article (sect. 6.1).

Borsboom et al. write that the counting rule “seems
just about right,” and perhaps it is neurologically correct
in some cases (e.g., Gold & Shadlen 2001). However,
even if this is true, the counting rule is not where the
hard work of cognition is being done (Anderson). Like-
wise, although we fully agree with Chater et al. that inter-
esting behavior can emerge from simple rules, it is not the
counting rule that is responsible for this emergence; it is
the structure of the hypothesis space. As Gopnik points
out, “The central advance has not been Bayes’ law itself,
but the ability to formulate structured representations,
such as causal graphical models, or ‘Bayes nets’ (Pearl
2000; Spirtes et al. 2000), or hierarchical causal models,
category hierarchies or grammars.” Thus, as argued
above, the hypothesis space is where the interesting

psychology lies in most Bayesian models. If we consider
it a core assumption of a model, then the model makes
meaningful, testable predictions. Although most Bayesian
models cast their hypothesis spaces as components of
rational analysis and not psychological entities (or else
are noncommittal), one can certainly postulate them as
psychological representations (Heit & Erickson). This is
one way in which Bayesian models can potentially make
important contributions. Of course, the assumption of
optimal inference with respect to the assumed represen-
tation could be, and probably often is, wrong
(Uhlmann), but the important point for present purposes
is that this claim becomes testable once the learner’s rep-
resentations and goals are pinned down as psychological
commitments.

Therefore, casting assumptions about the hypothesis
space, as well as about priors and goals, as psychological
claims rather than merely elements of a rational analysis
could significantly strengthen the theoretical import of
Bayesian models. The problem, as argued above, is that
too much Bayesian research is unclear on the intended
psychological status of these assumptions (Bowers &
Davis; Fernbach & Sloman). This ambiguity distorts
the conclusions that can be drawn from such models.
Often the message of a Bayesian model is taken to be
that behavior in the domain in question can be explained
as optimal probabilistic inference. Instead, the message
should be that behavior can be explained as optimal infer-
ence, if the subject makes certain (often numerous and
highly specific) assumptions about the task environment
and is trying to optimize a particular function of behavioral
outcomes. Logically, the latter is a weaker conclusion, but
it is more nuanced and hence theoretically more substan-
tive. The situation would be much less interesting if the
correct theory of cognition were, “It’s all optimal infer-
ence, end of story.” Fortunately, that does not appear to
be the case, in part because of empirical findings that con-
tradict the predictions of specific rational models (Baetu,
Barberia, Murphy, & Baker [Baetu et al.]; Danks &
Eberhart; Glymour; Hayes & Newell; Jenkins et al.;
Uhlmann), but also because optimal inference is not
even a full-fledged theory until the learner’s goals and
background assumptions are specified.

Treating goals, hypotheses, and priors as part of the
psychological theory should encourage more consider-
ation of which assumptions of a Bayesian model are impor-
tant to its predictions and which are implementation
details. Recognizing this distinction is just good modeling
practice, but it is as important in Bayesian modeling as in
other frameworks (Fernbach & Sloman). Once this shift
of perspective is in place, other questions arise, such as
how the learner acquired the structural knowledge of
the environment embodied by the proposed hypothesis
space (or whether it is innate) and how it compares to
knowledge assumed by other theories. Questions of this
type are not often addressed in the context of Bayesian
models, but taking them into consideration could
help the models become much more psychologically
complete.

To revisit our example from the target article of Kemp
et al.’s (2007) model of second-order generalization in
word learning, the model assumes there is potential regu-
larity across named categories in terms of which object
dimensions are relevant to defining each category. This
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is a critical assumption of the model, in that it drives the
model’s most important predictions, and without it
the model would not reproduce the core phenomenon –
the shape bias in children’s word learning – that it was
developed to explain. Thus, the conclusion to be taken
from the model is not that the shape bias is a direct conse-
quence of optimal probabilistic inference, or even that the
shape bias is a consequence of optimal inference allowing
for overhypotheses across categories, but that the shape
bias is consistent with optimal inference if the learner
assumes potential regularity across categories in terms of
dimension relevance. The question is, therefore, how to
regard this last claim. From a strict rationalist perspective,
it follows directly from the structure of the environment.
This stance is problematic, as already noted, because the
relevant property of the environment was not empirically
verified in this case.

An alternative position is that the learner’s expectation
of dimensional regularity across categories is a psychologi-
cal claim. This perspective takes the model out of the pure
computational level and creates a starting point for
mechanistic grounding. This move has three advantages:
It clarifies what the model does and does not explain,
identifies important questions remaining to be answered,
and facilitates comparison to other models cast in different
frameworks. Regarding the first two of these points, the
model demonstrates that second-order generalization
emerges from Bayesian inference together with the expec-
tation of dimensional regularity, but many other questions
remain, such as: How does the learner know to expect this
particular regularity in the environment? How does he or
she verify the pattern is present in the input data? (Like
most Bayesian models, the model takes p[data j hypoth-
esis] as a starting point, without reference to how this con-
ditional probability is evaluated.) How does the learner
produce new responses consistent with what he or she
has inferred? These are all natural questions from a
mechanistic perspective, and the model would be much
stronger if it included answers to them.

As Jenkins et al. explain, the structure discovered by
Bayesian models of development does not truly develop
or emerge. It is built in a priori. All a Bayesian model
does is determine which of the patterns or classes of pat-
terns it was endowed with is most consistent with the data
it is given. Thus, there is no explanation of where those pat-
terns (i.e., hypotheses) come from. Once one realizes that
the structure built into the (over)hypothesis space is at
the core of the model’s explanation, it is natural to
compare those assumptions with the knowledge assumed
within other theoretical frameworks (the third advantage
listed in the previous paragraph). In the case of models of
second-order generalization, such comparisons lead to rec-
ognition that the structural knowledge built into Kemp
et al.’s (2007) overhypothesis space is essentially the same
as that embodied by previous theories based on attention
and association learning (Smith et al. 2002). One can then
inquire about the source of this knowledge. Whereas the
Bayesian model is silent on this question, subsequent
work on the attentional model has suggested ways it could
emerge from simpler learning processes (Colunga &
Smith 2005). Although Colunga and Smith’s model may
not represent the final answer, it at least attempts to
explain what Kemp et al.’s model merely assumes. Thus,
taking a mechanistic stance toward Kemp et al.’s model

clarifies its contribution but also reveals important ques-
tions it fails to address. This is not an unavoidable weakness
of the Bayesian approach, but it does suggest that applying
more scrutiny to the assumptions of Bayesian models would
start them on a path toward providing more complete
psychological explanations.

Hayes & Newell offer a similar analysis of J. R.
Anderson’s (1991b) rational model of categorization.
Beyond the several lines of empirical evidence they offer
against the rational model, the important point for the
present argument is that these issues are not even considered
until one pins down the psychological commitments of the
model. That the model generates predictions by averaging
over hypotheses (instead of using the most likely possibility;
cf. Murphy & Ross 2007), that it does not allow for within-
cluster feature correlations, and that what it learns is inde-
pendent of the prediction task it is given (cf. Love 2005),
are all strong assumptions. The crucial role of these assump-
tions can easily be overlooked when they are viewed as
merely part of the rational analysis, but if viewed as psycho-
logical claims they open up the model to more careful evalu-
ation and further development.

In conclusion, Bayesian models may have significant
potential if cast as mechanistic theories. Framing hypoth-
esis spaces as psychological commitments regarding the
background knowledge and expectations of the learner
seems particularly promising, as it mitigates many of the
weaknesses of Bayesian Fundamentalism and opens up
the models to the same sort of scientific evaluation used
for other approaches. This stance also raises other ques-
tions, perhaps most importantly as to where the back-
ground expectations (i.e., the environmental structure
embodied by the hypothesis space) come from, as well
as how that knowledge is represented and how it compares
to assumptions of previous theories. These questions have
received little attention but could make Bayesian theories
much more powerful and complete if answered. In
general, Bayesian models have not yet delivered much
on the mechanistic level, but we suspect this is due
more to their not having been pushed in this direction
than to any inherent limitation of the approach.

R5. Prospects for integration

The preceding sections argue that Bayesian models can
potentially contribute much to cognitive theory, but they
must be tied down to explicit psychological commitments
for this potential to be realized. The target article pro-
posed several specific avenues for integration of rational
and mechanistic approaches to cognitive modeling, and
we are encouraged by the general consensus among com-
mentators that these approaches, which we referred to as
Bayesian Enlightenment, embody the proper psychologi-
cal role of Bayesian models in cognitive science (Chater
et al.; Danks & Eberhardt; Edelman & Shahbazi;
Gopnik; Herschbach & Bechtel; Holyoak & Lu;
Navarro & Perfors; Rehder). Some research in this
vein is already underway, and we hope the present dialo-
gue helps to focus the issues and hasten this transition.
Nevertheless, the commentaries raised several challenges,
which we address here.

Regarding the general proposal of incorporating
rational or computational principles into mechanistic
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modeling, Anderson argues that computational-level
modeling is incoherent, and in fact he questions the very
existence of a computational level of analysis on grounds
that the brain was not designed top-down. Unlike compu-
ter programs, brain function emerged through self-organ-
ization. Anderson suggests that the brain does not perform
calculations any more than other objects compute their
dynamics. We believe this position mischaracterizes com-
putational-level modeling. Just as physical laws of motion
are useful for understanding object dynamics, compu-
tational theories can be informative about cognitive behav-
ior even if they do not capture the internal workings of the
brain (notwithstanding our various other criticisms). The
question of whether a level of explanation “exists” in the
system being modeled is an ontological red herring in
our view, and it has little bearing on whether the expla-
nations are scientifically useful. If certain rational prin-
ciples can help to explain a wide range of behaviors (e.g.,
see Chater et al.’s example of explaining away), then
those principles have contributed to scientific understand-
ing. However, we certainly agree with Anderson that the
rational principles must be suitably grounded and con-
strained, and the additional assumptions needed to
explain the data (e.g., regarding goals and hypotheses)
must be recognized and scrutinized as well.

Although rational analysis and computational-level
modeling are often identified, Fernbach & Sloman
point out that they are not the same. Rational models
explain behavior by appeal to optimality, whereas compu-
tational models describe the function of behavior regard-
less of whether it is optimal. In practice, most rational
models are computational because they only consider
optimality of behavior, rather than of the behavior
together with the system that produces it. However,
Markman & Otto observe that restricting to behavior
alone produces an incomplete definition of rationality,
because it ignores factors like time and metabolic cost.
Thus, a complete rational account of cognition should
take mechanism into account (see target article, sect. 5.3).

Nevertheless, rationality is generally viewed as a prop-
erty of the cognitive system as a whole (and its interaction
with the environment), whereas mechanistic modeling
involves iteratively decomposing phenomena into com-
ponents and showing how the components interact to
produce the whole (Herschbach & Bechtel). This con-
trast raises the question of how rational and mechanistic
explanations can be integrated. The solutions Herschbach
& Bechtel offer align well with our proposals and generally
fall into two categories. First, one can consider optimality
of one aspect of the cognitive system with respect to
knowledge or constraints provided by other components.
This approach aligns well with our call for treating Baye-
sian hypotheses as assumptions about the learner’s knowl-
edge, rather than as products of rational analysis. It also fits
with our proposal in the target article (sect. 6.2) for bring-
ing rational analysis inside mechanistic models, in order to
derive optimal behavior of one process in the context of
the rest of the model (e.g., Shiffrin & Steyvers 1998;
Wilder et al. 2009).

Second, one can study algorithms that approximate
optimal inference (e.g., Daw & Courville 2007; Sanborn
et al. 2010a). Under this approach, rational and mechanis-
tic considerations enter at different levels of analysis, and
the aim is to understand how they constrain each other.

Bowers & Davis and Herschbach & Bechtel question
this approach, arguing that it is no more effective than
mechanistic modeling alone (see also the discussion of
bounded rationality in the target article, sect. 5.4). In the
end, a mechanistic model is evaluated only by how well
it matches the data, not by how well it approximates
some rational model of the data. However, rational con-
siderations can still play an important role by constraining
the search for mechanistic explanations. Understanding
the function a mechanism serves should help guide
hypotheses about how it works. When phenomena in
different domains can be linked by a common rational
explanation, this can suggest a common underlying mech-
anism. Also, understanding the relationship between a
mechanistic model and a rational analysis, in terms of
both how the model implements and how it deviates
from the optimal solution, can help to identify which
aspects of the model are necessary for its predictions.
This approach can mitigate the tendency Norris warns
of for modelers to ascribe psychological reality to superflu-
ous mechanisms not entailed by the data. In these ways,
rational considerations can provide principled constraints
on development of mechanistic models. As Danks &
Eberhardt argue, integration of rational and mechanistic
models should not amount to reduction of the former to
the latter, because such an approach would relinquish
the explanatory benefits of the computational level.
Instead, rational explanations should “pull up” mechanistic
ones, in order to explain why one algorithm or implemen-
tation is more appropriate than another for a given
task. Nevertheless, questions remain of how somewhat
subjective notions of appropriateness should be incorpor-
ated into model selection.

Because the rationality metaphor is based on a math-
ematical ideal and has no physical target, it is compatible
with essentially any mechanism (target article, sects. 2.2
and 6.2). Thus, incorporating rational principles is poten-
tially fruitful within any mechanistic modeling framework.
For example, Barsalou suggests connecting the Bayesian
framework to the perceptuomotor simulation mechanisms
proposed in theories of grounded cognition. Such an
approach could fulfill our call for grounding Bayesian
hypotheses in the learner’s knowledge in an especially con-
crete way. Although we believe there is much work to do
before theories of grounded cognition can be given a rigor-
ous Bayesian interpretation, it is encouraging to see people
thinking in this direction. Based on the previous consider-
ations, one important goal in this line of research would
be to understand not just how Bayesian inference can be
implemented by simulation mechanisms, but what the
implications are of this rational interpretation for the
details of how these simulation mechanisms should operate.

Concerning the opposite connection, of mechanistic
implications for rational analysis, Chater et al. claim
that studying cognition at the algorithmic level cannot
provide insight into the computational level (e.g., into
the purpose the algorithm). On the contrary, investigating
how cognitive mechanisms deviate from rational predic-
tions can inform both what the function of the system is
and how it is carried out. For example, the experimental
results and accompanying modeling of Sakamoto et al.
(2008) indicate that categories in their task are psychologi-
cally represented in terms of central tendency and varia-
bility (implemented in their model as mean and
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variance), and that the goal of learning is to estimate these
statistics for use in classifying new items. The novel
sequential effect predicted by the model and confirmed
in the experiments arises due to cue competition effects
from learning these two statistics from joint prediction
error (Rescorla & Wagner 1972). Thus, the explanation
of the experimental results requires inference of the com-
putational goals of the learning system (i.e., the statistics to
be estimated) as well as of how those goals are
implemented.

Clarity on the status of model assumptions is as impor-
tant for mechanistic models as we have argued it is for
rational models (Norris). Norris uses the mechanistic
model of Sakamoto et al. (2008) to question whether we
advocate going too far in reifying mechanism for its own
sake. However, he acknowledges the Sakamoto et al.
model does not suffer this problem and praises its inter-
mediate level of abstractness. Indeed, our position is that
it would be pointless to commit to excess detail that does
not contribute to a model’s predictions. The model in
that study proposes that category means and variances
are learned through joint error correction, because this
mechanism is responsible for the model’s primary predic-
tion. The model makes no commitments about how the
computations behind the update rule are carried out,
because those details have no bearing on that prediction
(although they could be relevant for explaining other
data). Navarro & Perfors also criticize this model,
suggesting it gives no consideration to computational-
level issues. However, a primary principle of the model
concerns what environmental (i.e., category) statistics
people track, and the update rule used to learn them has
well-understood computational connections to least-
squares estimation. Navarro & Perfors go on to claim
that the purely rational model considered by Sakamoto
et al. is mis-specified for the task, but this comment
leads back to one of the core weaknesses of rational analy-
sis, that it depends on the learner’s assumptions about the
environment. The rational model in question is indeed
optimal for a certain class of environments, and it is
closely related to a rational model of a similar task pro-
posed by Elliott and Anderson (1995). There is certainly
a Bayesian model that will reproduce Sakamoto et al.’s
findings, based on the right choice of generative model
for the task, but this is not informative without a theory
of where those assumptions come from, or else of the
mechanisms from which they implicitly emerge. Such a
theory is not forthcoming from a fundamentalist approach,
but is it possible from enlightened approaches that con-
sider mechanism and rational principles jointly.

Finally, several commentators argue that integrative
research is not possible before technical frameworks
have been developed. Navarro & Perfors and
Edelman & Shahbazi argue that much previous funda-
mentalist research has paved the way for work that gives
real consideration to the processes and representations
underlying Bayesian models. Likewise, Sewell et al.
suggest that individual work focusing on one framework
or level of analysis is useful because the field as a whole
implements a division of labor that leads to integration.
We generally agree with this assessment, provided the
integrative work gets done. The important point is that
fundamentalist research cannot be the end goal, because
it offers little theoretical contribution on its own. Nearly

all scientific methods undergo initial technical develop-
ment before they can be used to advance theory, but the
two should not be confused. Thus, once again, the con-
clusion is that it is critical to carefully consider the contri-
bution and commitments of any model, so that one can
discriminate advances in theoretical understanding from
prerequisite technical advances.

R6. Conclusions

Bayesian methods have advanced rapidly in recent years,
offering the hope that they may help answer some of the
more difficult problems in cognitive science. As Lee elo-
quently states (see also Edelman & Shahbazi), Bayesian
inference offers a “coherent solution to the problem of
drawing inferences over structured models from sparse
and noisy data. That seems like a central challenge faced
by the mind, and so it is not surprising the metaphor has
led to insightful models of human cognition.” However,
in most cases, more clarity is needed on just what those
insights are.

Much of the current confusion arises from ambiguity in
the levels of analysis at which Bayesian models are
intended. The standard position from rational analysis
(J. R. Anderson 1990) is that a rational model is based
purely on the environment and makes no reference to
psychological constructs. Many Bayesian writings, includ-
ing some of the present commentaries (Borsboom et al.;
Chater et al.; Fernbach & Sloman; Gopnik), endorse
this position while simultaneously arguing that processes
or representations within Bayesian models should be
regarded as psychological entities. The danger with this
sort of inconsistency is that Bayesian models might
appear to say much more than they actually do, because
researchers can attribute rich psychological assumptions
to their models but be free to disavow them as merely
computational when they are contradicted by data.

Pinning down the theoretical status of Bayesian models
would help clarify their core assumptions and predictions,
thus making it easier to evaluate their scientific contri-
bution. As we have argued, when Bayesian models are
held to the computational level, they are largely vacuous.
This position, which we have labeled Bayesian Fundament-
alism, amounts to the claim that people act according to
probabilities of future events based on past events, usually
without any validation of what those probabilities actually
are. More promising is the approach we have labeled Baye-
sian Enlightenment, which involves treating some or all of a
model’s components as psychological constructs. This
approach fits well with Rehder’s proposal to drop the
“rational” label and adopt the term “probabilistic model.”
Probabilistic models still naturally incorporate rational prin-
ciples, but emphasizing the psychological realization of
these principles shifts attention to other important issues,
such as the source of and justification for the prior knowl-
edge built into the hypothesis space, which assumptions
are critical to model predictions, and how they compare
to other proposals. Pinning down the psychological commit-
ments of Bayesian models in this way clarifies what they do
and do not explain and enables them to be developed into
more complete psychological theories.

Rogers & Seidenberg note that connectionism had pro-
blems of underconstraint similar to those noted here for
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Bayesian models, but that connectionism has since become
far more productive by grounding in neuroscience. Like-
wise, Sewell et al. argue that the setbacks for connection-
ism, Behaviorism, and evolutionary psychology discussed
in our target article all led to eventual important progress
as a result of addressing noted shortcomings. We believe
the present critique has the potential to have a similar posi-
tive effect, and like these commentators, we predict Baye-
sian modeling will follow a similar path of maturation and
integration into the rest of cognitive science.
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